1.NTH25/25C リニューアル

NTH25-ST121B (STN モノ如)とNTH25C-ST141B (STN カラー)を以下の形式に置き換えます。 ・リニューアル :NSH5-SQR00B-V2 (STN カラー)

1-1:リニューアル(NSH5に置き換え)

置き換え対象機種

リニューアル推奨機種

型式	通信方式
<stn モノクロ液晶=""></stn>	上位リンク
NTH25-ST121B	(RS-232C)
< STN カラー液晶 >	NT リンク(1:1)
NTH25C-ST141B	(RS-232C)
	メモリリンク
	(RS-232C)

型式	通信方式
< STN カラー液晶 >	上位リンク
NSH5-SQR00B-V2	(RS-232C)
	NT リンク(1:1)
	(RS232C)

<置き換えに際しての注意事項>

通信方式がメモリリンクの場合、NTH5にはメモリリンク方式がありませんので置き換えできません。

NTH5はカラーSTN液晶タイプのため、NTH25-ST121B(モノクロ液晶)の置き換えはSTNカラー 液晶になりますので表示の見栄えが異なります。

NTH25/25CとNTH5は、以下の仕様が異なっています。

・PTとPLC間の接続ケーブル

・ファンクションスイッチ数

・外部I/F仕様

詳細は以下を参照願います。

P4の「1-2-2:NTH25とNSH5の外部出力I/Fの主な仕様について」、 P9の「1-2-4-1):画面の置き換えについて」の <u>3.NSH5ファンクションスイッチの割付</u> P14の「1-2-4-3:NSH5の設置について」を参照してください。

1-2-1:NTH25とNSH5の主な仕様について

置き換え機種:NTH25-ST121B

NTH25-ST121B と NSH5-SQR00B-V2 の主な仕様は以下のとおりです。

項目	NTH25-ST121B	NSH5-SQR00B-V2
外形寸法(W,H,D)	205 × 140 × 71.2mm	223 × 179 × 70.5mm
表示デバイス	STNモノクロ液晶	カラーSTN液晶
右効表示エリア(横ヶ縦)	96 × 72mm	115.18 × 86.38mm
	(4.7 インチ)	(5.7 インチ)
表示ドット数(横×縦)	3 2 0 × 2 4 0 F ッ F	
泊昭 色	左右±30°	左右±50°
1元主] 円	上30°下20°	上45°下50°
定格電源電圧	DC 2 4 V	
消費電力	15W以下	10W以下
使用周囲温度	0 ~ 4 0	

NTH25-ST121BとNSH5-SQR00B-V2に関しては以下の違いがありますのでご注意ください。

1)外形寸法について

NSH5の外形は、NTH25より寸法(WとH)が若干大きくなります。

2) 表示部の見栄えについて

NSH5にリニューアルすることにより、表示部がモノクロ液晶からSTNカラーに変更になりますので、表示部の見栄えが変ります。また、表示エリアが大きくなり見やすくなります。

3)電源について

同じ電源電圧であり消費電力も低下しますので、電源の問題はありません。

置き換え機種:NTH25C-ST141B

NTH25C-ST141BとNSH5-SQR00B-V2の主な仕様は以下のとおりです。

項目	NTH25C-ST141B	NSH5-SQR00B-V2
外形寸法(W,H,D)	205 × 140 × 71.2mm	223 × 179 × 70.5mm
表示デバイス	カラーSTN液晶	カラーSTN液晶
右効実テェリマ(構文紛)	96 × 72mm	115.18 × 86.38mm
	(4.7 インチ)	(5.7 インチ)
表示ドット数(横×縦)	3 2 0 × 2 4 0 F ット	
祖熙岳	左右 ± 50°	左右 ± 5 0 °
	上30° 下30°	上45°下50°
定格電源電圧	DC 2 4 V	
消費電力	15W以下	10W以下
使用周囲温度	0 ~ 4 0	

NTH25-ST121BとNSH5-SQR00B-V2に関しては以下の違いがありますのでご注意ください。

1)外形寸法について

NSH5の外形は、NTH25より寸法(WとH)が若干大きくなります。

2) 表示部の見栄えについて

NSH5ニューアルすることにより表示エリアが大きくなりますので、見やすくなります。

3)電源について

同じ電源電圧であり消費電力も低下しますので、電源の問題はありません。

1 - 2 - 2 : NTH25とNSH5の外部出力I/Fの主な仕様について

NTH25-ST121B、NTH25C-ST141BとNSH5-SQR00B-V2の外部I/Fの仕様は以下のとおりです。

項目	NTH25-ST121B/ NTH25-ST141B	NSH5-SQR00B-V2
	<u>13点</u> 接点通知、チャネル通知 ・F1~F11の12点 ・オペレーションスイッチ1点	<u>10点</u> 接点通知 ・F3/F4/F5/F8/F9/F10の6点
ファンクションスイ ツナ	ハードワイヤ出力 無し	ハードワイヤ出力 ・F1/F2/F6/F7 の4点 ・1a接点 ・定格電圧:24V ・最大定格電流:50mA
非常停止スイッチ	ハードワイヤ出力 <u>1り接点</u> ・定格電圧:DC12~24V ・最大定格電流:1mA~1A	 ハードワイヤ出力 <u>2 b接点</u> ・定格電圧: 2 4 V ・最大定格電流: 1 0 0 m A ・最小適用負荷: DC 5 V 1 m A 内部メモリ取り込み 1接点:非常停止操作時ON

NTH25-ST121BとNSH5-SQR00B-V2に関しては以下の違いがありますのでご注意ください。

1)ファンクションスイッチについて

ファンクションスイッチが13点 10点に減少します。またNSH5では4点がハードワイヤ出力 となります。ハードワイヤ4点をPLC入力とするか足りない分については、画面上に操作ボタンを 設けるなどの対策を行ってください。

2)非常停止スイッチについて

出力する外部機器の最大付加電流が小さくなります。負荷電流に不足が発生しないか確認してください。 不足が発生した場合は、外部機器との間にリレーを入れるなどの処置をしてください。 **1 - 2 - 3 : NTH25 / 25C画面データのコンバートについて** NSH25/25Cの画面データをNSH5に変換します。 詳細はP6の<u>「1 - 2 - 4 - 1)の画面の置き換えについて」</u>を参照願います。

1-2-4:NSH5へのリプレースの手順

NSH5へのリニューアルは以下の手順に従って置き換えて下さい。

<u>1 - 2 - 4 - 1):画面の置き換えについて</u>

画面の置き換えに際しては以下のサポートツールが必要ですのでご用意願います。

必要なツール
・NS 用作画ツール CX-Designer
形 NS-CXDC1-V1
・パソコン接続ケーブル
USBケーブル 市販USBケーブル

1.NTH25/25C NSH5に

画面変換

*NTH25のPT本体から画面データを吸い上げることはできません。

NTH25の画面データ作成時のファイル(ファイルの種類 "メモリマップイメージファイル(.mmi))をご用意ください。

以下の要領でNTH25画面データをNSH5に変換します。

1<u>.NT31C_NT631C変換支援ツールの起動</u>

- 「NT31C__NT631C変換支援ツール」を次の手順で起動します。
 - ・[CX-One をインストールした場合]
 - 「スタートメニュー」 「全てのプログラム」 「Omron」 「CX-One」 「CX-Designer」 「NT31C_631C 変換支援ツール」
 - ・[CX-Designer 単体をインストールした場合]

「スタートメニュー」「全てのプログラム」「Omron」「CX-Designer」「NT31C_631C 変換支援ツール」

	-
変換元	
変換先	
状態	
容過	
0%	

<u>2.NS5画面に変換</u>

「ファイル」 「変換元ファイルを開く」で、NTH25の画面データの 拡張子mmiファイル (Sample.mmi)を選択する。

「ファイル」 「変換後ファイルの保存先」にてファイルの保存先とファイル名を指定する。 (Sample.ipp)

「変換」 「変換実行」 にて変換を開始する。

	_	
ファイル(E) 変換(C) ヘルプ(H)		
変換元 NT	31C-V2	変換元ファイル名と変換先ファイル名を Cドライブのtempフォルダのファイ
C:¥temp¥sample.mmi		ル「Sample」として例示しています)
変換先 NS	i5-SQ0[]-V1 System Ver6.2	
C:¥temp¥sample.ipp		
状態 変換完了しました。 詳細はログファイルを参照して (D:¥Program Files¥OMRON	〈だき(い。 WCX-One¥CX-Designer¥NT631C_Cnv¥lo	
経過 國國國國國國國國	100%	

「NT31C_NT631C変換支援ツール」を終了します。 変換完了後、「×」ボタンを押します。

変換後の画面データについて

「NT31C_NT631C変換支援ツール」は、NTH25/25Cの画面データを次のNS5-V1機種に変換します。

変換元の画面データ	変換後の画面データ
NTH25(NT31 V2)	NS5-MQ0 -V1
N T H 2 5 C (NT31C-V2)	NS5-SQ0 -V1

*上記NS5画面はNSH5には転送できません。 転送しようとすると、CX-Designer上に以下の警告エラーメッセージが表示されます。

P8の「3.NS5 NSH5画面コンバート」を参照し、NSH5へ画面コンバートしてください。

<u>3.NS5 NSH5画面コンパート</u>

NS5画面を「CX-Designer」にてNSH5に変換します。

「CX-Designer」を起動します。

NS5画面のプロジェクトを開きます。

- ・[CX-One をインストールした場合]
- 「スタートメニュー」 「全てのプログラム」 「Omron」 「CX-One」 「CX-Designer」 ・[CX-Designer 単体をインストールした場合] 「スタートメニュー」 「全てのプログラム」 「Omron」 「CX-Designer」

[ファイル] [プロジェクトを開く]にてP7の「2.NS5画面に変換」で変換先に指定 したフォルダのファイル (Sample.ipp)を指定し、[開く]を押します。

猒					? ×
ファイルの場所①:	🔄 temp	•	🗢 🔁	💣 🎟 •	
C sample sample.IPP					
 ファイル名(N):	sample.IPP			開((0))
ファイルの種類(工):	プロジェクトファイル(*.IPP)		•	キャンセ	n j

NS5 NSH5に機種変更します。

[ツール] [コンバート] [機種]にて[NSH5-SQ0 -V2]を選択します。 変更先のファイル名 (Sampleh5.ipp)を指定し、「保存」を押します。

<u>? ×</u>
r 🖬 🔁
開(②)
キャンセル

2 . N S H 5 画面データの修正

NTH25/25C画面データがNSH5画面データに変換されましたが、NTH25/25CとN SH5では互換性がない箇所がありますので、変換後のNS5の画面データの修正が必要になります。 修正箇所に関しては、付録「NT NS画面変換後の注意点」を参照願います。

3.NSH5ファンクションスイッチの割付

NTH25/25Cでファンクションスイッチを使用の場合、NSH5でファンクションスイッチを 割り付けます。

ファンクションスイッチに関しては、以下の注意が必要です。

NSH5ではファンクションスイッチ数が13点(NTH25/25C) 10点に減少します。 NSH5では10点のうち4点はハードワイヤー出力となります。 ファンクションスイッチの不足分については、画面上に操作ボタンを設けるかハードワイヤ4 点をPLCの入力ユニットに入力する等の対策を行って下さい。

ファンクションスイッチの割付は、[PT] [システム設定] [NSハンディ]タブを選択して行います。

キー(大照モ_)			_ NTH25/25C で仕様し
非常停止(出			たファンクションスイ
F3(<u>P</u>)	SERIALA:00000.00	設定して	のアドレスを指定して
F4(<u>C</u>)	SERIALA:00000.01	設定(3)	
F5(<u>D</u>)	SERIALA:00000.02	設定(4)	
F8(<u>E</u>)	SERIALA:00000.03		
F9(E)	SERIALA:00000.04	設定(6)	
F10(<u>G</u>)	SERIALA:00000.05	[設定[27]]	
ステーションパ犬り	#E∓=ねアドリレフ		

ファンクションスイッチ

	N T H 2 5 / 2 5 C		N S H 5
F 1	ビットアドレス	F 1	(ハードワイヤ出力)
	ワードアドレス(固定値の設定)		
F 2	ビットアドレス	F 2	(ハードワイヤ出力)
	ワードアドレス(固定値の設定)		
F 3	ビットアドレス	F 3	ビットアドレス指定
	ワードアドレス(固定値の設定)		
F 4	ビットアドレス	F 4	ビットアドレス指定
	ワードアドレス(固定値の設定)		
F 5	ビットアドレス	F 5	ビットアドレス指定
	ワードアドレス(固定値の設定)		
F 6	ビットアドレス	F 6	(ハードワイヤ出力)
	ワードアドレス(固定値の設定)		
F 7	ビットアドレス	F 7	(ハードワイヤ出力)
	ワードアドレス(固定値の設定)		
F 8	ビットアドレス	F 8	ビットアドレス指定
	ワードアドレス(固定値の設定)		
F 9	ビットアドレス	F 9	ビットアドレス指定
	ワードアドレス(固定値の設定)		
F 1 0	ビットアドレス	F 1 0	ビットアドレス指定
	ワードアドレス(固定値の設定)		
F 1 1	ビットアドレス		
	ワードアドレス(固定値の設定)		
+	ビットアドレス		
	ワードアドレス(固定値の設定)		
-	ビットアドレス		

ワードアドレス(固定値の設定)

NTH25/25Cでワードアドレス指定し固定値を設定している場合、NSH5ではビットアドレ ス指定のみになりますので、ワードアドレス指定による固定値の設定はラダープログラムを変更する などの対策をとってください。

4. 画面データの転送

CX - Designerによるダウンロード
 転送方法を選択します。
 [PT] - [転送] - [転送設定]を選択します。
 画面データを転送します。
 [PT] - [転送] - [転送[パソコン PT]]を選択します。

1-2-4-2):ホスト側プログラムの変更について

ホスト側がPLCのとき

1. PLCラダープログラム変更

PTにはPLC-PT間で情報をやり取りするエリアがあります。この情報をやり取りするエリア を、NTH25シリーズでは「PT状態制御エリア/PT状態通知エリア/トレンドグラフ制御「エ リア」、NSシリーズでは、「システムメモリ」と呼びます。

NTH25シリーズの「PT状態制御エリア/PT状態通知エリア/トレンドグラフ制御エリア」 とNSシリーズの「システムメモリ」では、メモリ構成に違いがあります。

システムメモリの違いによるラダープログラムの変更

- ・ラダープログラムで、「PT状態制御エリア/PT状態通知エリア/トレンドグラフ制御エリア」
 を参照している場合には、NSのシステムメモリの構成にあわせてラダープログラムを変更してください。
- ・NTH25/25Cの「PT状態制御エリア/PT状態通知エリア/トレンドグラフ制御エリア」 とNSシリーズの「システムメモリ」の対応関係は次ページを参照ください。

<u> PT状態制御エリアの対応表</u>

PLC の C H	NTH25/25Cの割付	NSのシステムメモリ
n	画面番号	\$ S W 0
	(BCD4桁)	
n+1	システム予約	-
n +2	システム予約	-
n +3	PT 状態制御ビット	\$ S B *
		下記の「PT状態制御ビットの対応
		表」を参照して下さい。
n+4	システム予約	-

<u>PT状態制御ビットの対応表</u>

1	NTH25/25Cの状態制御ビット	NS のシステムメモリ
1 5	0:未使用	
1 4	0:未使用	
13	0:未使用	-
12	0:未使用	-
1 1	0:未使用	-
1 0	0:未使用	-
9	0:未使用	-
8	0:未使用	-
7	0:未使用	-
6	0:未使用	-
5	時計データ出力 する / しない	(機能なし)
4	0:未使用	-
3	0:未使用	-
2	0:未使用	-
1	0:未使用	-
0	バックライトモード 点灯 / 消灯	\$ S B 9

<u>PT状態通知エリアの対応表</u>

PLCのCH	N T H 2 5 /	25Cの割付	N S のシステムメモリ
m	PT ステータス通知	ビット	\$ S B *
			下記「PTステータス通知ビットの
			対応表」を参照して下さい。
m+1	システム予約		-
m+2	システム予約		-
m+3	月(BCD2 桁)	日(BCD2桁)	\$ S W 1 5 (日・時)
m+4	時(BCD2桁)	分(BCD2桁)	\$ S W 1 4 (分・秒)
m+5	年(BC	D4 桁)	\$ S W 1 6 (年・月)

ビット	NTH25/25CのPTステータス通知ビット	NS のシステムメモリ
15	0:未使用	-
14	0:未使用	-
13	0:未使用	-
12	0:未使用	-
11	数値入力ストローブ 入力あり / なし	(機能なし)
10	0:未使用	-
9	0:未使用	-
8	0:未使用	-
7	0:未使用	-
6	0:未使用	-
5	0:未使用	-
4	0:未使用	-
3	0:未使用	-
2	0:未使用	-
1	0:未使用	-
0	バックライト状況 点灯中 / 消灯中	\$ S B 1 1

PT ステータス通知ビットの対応表

<u>トレンドグラフ制御エリア</u>

PLCのCH	NTH25/25Cの割付	NSのシステムメモリ
j	クリアビット	\$ S W 3 7 + \$ S W 3 5 ^{注 1}
j +1	クリアビット	\$ S W 3 7 + \$ S W 3 5 ^{注 1}
j +2	表示更新停止 / 再開ビット	ログの開始 / 停止ビット ^{注2}
j +3	表示更新停止 / 再開ビット	ログの開始 / 停止ビット ^{注2}

注1:\$ SW37に初期化したいデータロググループ を格納し、\$ SW35をONして下さい。 注2:データログの「プロパティ設定」の「データロググループ設定」の下記「ログの開始/停 止ビット」をj+2、j+3の各トレンドグラフの該当ビットに割り当てて下さい。

	-ログの開始/何 マログの開始	●止 ~//夏止友アドレフጧ○N/OFEで#	1御する(T)	
<	ፖኑኄአ(<u>J</u>)		設定(5)	\triangleright
	🗆 ፖኑንኦጋር	1時(四ケをワリノする圧)		

<u>1-2-4-3):NSH5の設置について</u>

NSH5を取り付け、PLCと接続します。

1.電源、制御出力の配線接続

NTH25/25Cの電源・制御出力は制御/電源コネクタ(10ピンフラットケーブルコネクタ) ですが、NSH5ではバラ線です。

NTH25/25Cコネクタに配線していた電源と制御出力信号をNSH5のバラ線に配線変更してく ださい。

NTH25/25Cの電源・制御コネクタのピンロケーション

ピンNo.	色+名称	信号名称
1	灰+24Ⅴ	電源端子 + 24∀
2	灰/白GND	電源端子0V
3	青/白OPR	オペレーション出力
8	緑EMR1	非常停止スイッチ接点出力
9	緑/白EMR1	非常停止スイッチ接点出力

NSH5での
 配線

NTH25/25 Cの電源線と制御信号を次のように配線換えしてください。

電源線

NSH5の電源線+24V(白色)と0V(茶色)のY端子を電源に接続します。 非常停止スイッチ

NSH5の非常停止(2b接点)信号線の「EMG1A1」・「EMG1A2」あるいは「EMG2A1」・「EMG2A2」

を配線します。

オペレーション出力

NSH5では、オペレーションスイッチに相当するスイッチはありません。 イネーブル(2a接点)信号線の「ENB1A1」・「ENB1A2」あるいは「ENB2A1」・「ENB2A2」 を使用するかファンクションスイッチF1/F2/F6/F7(ハードワイヤ)を使用するなど

ご検討ください。

NSH5の制御信号・ケーブルの詳細は 「NSHシリーズユーザーズマニュアル(SBSA-524)」の 1-3「専用ケーブルの仕様」、付-5「推奨イネーブル回路」を参照下さい。

4 . NSH5-SQ0 -V2 システム設定

PLCとの通信方式などの設定します。

・ NS 画面の4隅のうち任意の2個を同時に押して、「システムメ	
ニュー」に入ります。	
 ・「システムメニュー」の「PT動作設定」タブを押し、動作条 	
件を設定します。	
・ 「システムメニュー」「通信設定」タブを押し、通信方式を設	
定します。	
設定内容の詳細については「NSシリーズ セットアップマニュア	
ル(SBSA-517)の6章「システムメニューの操作」を参照ください。	

補足:通信設定やシステム設定は、CX-Designerのプロジェクトワークスペースの 「通信設定」、「システム設定」で設定することができます。