プリント基板用リレー 共通の注意事項

●各商品個別の注意事項は、各商品ごとの「**正しくお使いください**」をご覧ください。

安全上の要点

●安全性を確保するために注意が必要な事項です。

- ・通電中のリレー端子部(充電部)およびソケットの端子部(充 電部)には触らないでください。感電の恐れがあります。
- ・リレーの開閉容量などの接点定格値を超える負荷に対し ては、絶対に使用しないでください。絶縁不良、接点の溶 着、接触不良など規定の性能を損なうばかりでなく、リ レー自体の破損・焼損の原因となります。
- ・落下させたり内部を分解しないでください。特性を満足で きないばかりではなく、破損・感電・焼損の原因となりま す。
- ・リレーの耐久性は、開閉条件により大きく異なります。使 用にあたっては、必ず実使用条件にて実機確認を行い、性 能上問題のない開閉回数内にてご使用ください。性能の劣 化した状態で引き続き使用されますと、回路間の絶縁不良 やリレー自体の焼損の原因となります。
- ・コイルへの過電圧印加・誤電圧の印加、各端子への誤配線 は絶対にしないでください。誤って使用されますと、リ レーとしての機能が発揮されず、外部回路へ影響を与える だけでなく、リレー自体の破損・焼損の原因となります。
- ・引火性ガス・爆発性ガスなどの雰囲気中でのリレーの使用 はしないでください。開閉に伴うアークやリレーの発熱な どにより、発火または爆発を引き起こす原因となります。
- ・配線作業およびはんだ付け作業は、「使用上の注意」に従っ て正しく配線作業を実施ください。配線、はんだ付けが不 完全な状態で使用されますと、通電時に異常発熱により焼 損の原因となります。

●リレーのご使用にあたって

- ・リレーを実際に使用するにあたって、机上では考えられな い不測の事故が発生することがあります。そのため、実施 可能な範囲でのテストが必要です。
- ・カタログに記載の各定格性能値は、特に明記のない場合 は、すべてNECA C5442(旧JIS C5442)の標準試験状 態(温度+15~+35℃、相対湿度25~75%、気圧86~ 106kPa、標高2000m以下相当)のもとでの値です。実 機確認を行う際には、負荷条件だけでなく使用環境も実使 用状態と同条件で確認してください。
- ・カタログ中に記載の参考データは生産ラインの中からサ ンプリングした実測値を図に表したものです。保証値では ありません。
- ・カタログ中に記載の各定格・性能値は、単独試験における 値であり、各定格・性能値の複合条件を同時に保証するも のではありません。

使用上の注意

目次

No.	大分類	No.	分類	No.	項目	掲載ページ
		1	取りつけ 構造・ 保護構造	1 2 3	「保護構造について」 「ソケットとの組み合わせについて」 「塵埃の発生する雰囲気で使用する場合」	4
0	リレーの選択に 関して	2	駆動回路	1 2 3 4 5	「動作形態について」 「コイル仕様について」 「交流操作形コイル仕様について」 「全波整流対応形リレー」 「長期連続通電する場合」	5
		3	負荷	1 2 3 4 5 6	「接点定格について」 「開閉容量について」 「微小負荷レベルでの使用について」 「接点材料について」 「海外規格上の接点認定定格について」 「電気用品安全法(日本)について」	6
		1	負荷回路	1 2 3 4 5 6 7 8 9 10 11	「負荷開閉について」 ①抵抗負荷と誘導負荷 ②接点回路の電圧(接点電圧) ③接点回路の電流(接点電流) 「開閉耐久性について」 「故障率について」 「サージキラーについて」 「外部回路からのサージ対策について」 「多極リレー(2極以上のリレー)の負荷接続について」 「モータの正逆切り替えの場合」 「多極リレー(2極以上のリレー)での電源両切りについて」 「a・b接点間のアークによる短絡について」 「1a1b接点リレーの1c使用について」 「異なる容量の負荷接続について」 「接点の転移(移転)について」	7~9
2	回路設計に関して	2	入力回路	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	「最大許容電圧について」 「コイル印加電圧について」 「コイルコカー電圧は多動作電圧の変化について」 「入力電圧の印加電圧波形について」 「コイルオフ時のサージ防止について」 「コイルオフ時のサージ防止について」 「リレーコイルへの漏れ電流について」 「電源からの配線距離が長い場合」 「動作・復帰電圧、動作・復帰時間などの各特性が重要である場合」 「直流操作形リレー使用の場合 (1) 入力電源のリップルについて」 「直流操作形リレー使用の場合 (2) コイル極性について」 「直流操作形リレー使用の場合 (3) コイル印加電圧不足について」 「直流操作形リレー使用の場合 (1) 入力電源の電圧変動について」 「交流操作形リレー使用の場合 (2) 動作時間について」 「交流操作形リレー使用の場合 (3) コイル印加電圧波形について」 「交流操作形リレー使用の場合 (3) コイル印加電圧波形について」 「ラッチングリレー使用の場合 (1) 直流操作形ラッチングリレーのコイルの極性について」 「ラッチングリレー使用の場合 (2) 駆動回路について」 「ラッチングリレー使用の場合 (4) 直流入力の回路設計について」 「ラッチングリレー使用の場合 (5) ラッチングリレーの保持力の経時減衰について」 「ラッチングリレー使用の場合 (5) ラッチングリレーの保持力の経時減衰について」	9~12
				1 2	「1巻線ラッチングリレーの省消費電力ドライブ回路例」 「リード線径について」 「ソケットを用いた場合」	

No.	大分類	No.	分類	No.	項目	掲載ページ
3	使用環境および保管環境に関して		1 2 3 4 5 6 7 8	「使用・保管・輸送環境について」 「使用雰囲気について」 「悪性ガス雰囲気中での使用について」 「水や薬品、溶剤、油の付着について」 「振動・衝撃について」 「外部磁界について」 「外部荷重について」 「磁性粒の付着について」	13	
	ぬ リレーの実装作業		プリント 基板用 リレー	1	「超音波洗浄について」 「タブ端子へのはんだ付け禁止について	
4	に関して	して	「関して 2 ② 共通項目 3 4	1 2 3 4 5	「ケース取りはずし、端子カットについて」 「端子を変形させた場合」 「リレーの交換・配線作業について」 「コーティング、パッキングを実施する場合」	14
•	りレーの取り扱いに関して		-	1	「振動・衝撃について」	14
•			1 2 3 4 5 6 7 8 9 10	「プリント基板の選定 (1) 基板の材質」 「プリント基板の選定 (2) 基板の厚さ」 「プリント基板の選定 (3) 端子穴径およびランド径」 「取りつけ間隔について」 ① 周囲温度 ②相互磁気干渉について 「ノイズ対策のためのパターン設計について」 ① コイルからのノイズ ②接点からのノイズ ③ 高周波用パターン 「ランド形状について」 「パターンの導体幅および厚さについて」 「パターンの導体間隔について」 「プリント基板の固定方法について」 「プリント基板用リレーの自動実装について」 ① スルーホール形 ② サーフェス・マウント形	15~19	

●リレーの選択に関して

①取りつけ構造・保護構造

●-①-1「保護構造について」

リレーは使用雰囲気および実装条件によって適切な保護構造のリレーを選択しないと接触不良など不具合の原因となります。 下表の保護構造による分類を参照いただき、使用雰囲気に適したリレーを選択してください。

保護構造による分類

	項目			使用雰	思気
取付構造	保護構造	特長	特長 代表機種例 ゴミ・ホコリ の侵入		悪性ガス の侵入
	耐フラックス形	はんだ付け時に、フラックスが リレー内部に侵入しにくい構造	形G2R	△ (大きなゴミ・ホ (コリの侵入なし)	×
プリント基板 取りつけ リレー	プラスチック シール形	はんだ付け時のフラックスや洗 浄時の洗浄液の侵入を防止した 構造	形G6A 形G6S	0	○ (❸-3 参照)
	閉鎖形 (ケース入り形)	リレーをケースに入れ異物の接 触に対して保護した構造	形G4W	△ (大きなゴミ・ホ (コリの侵入なし)	×

最新情報は www.fa.omron.co.jp

● ① - ① - 2 「ソケットとの組み合わせについて」

当社リレーと当社指定のソケットの組み合わせでご使用ください。 他社ソケットとの組み合わせでは、通電容量の違いや、ソ ケットのかん合性の違いによりかん合部の異常発熱などの 問題が発生する原因となります。

● ① - ① - 3 「塵埃の発生する雰囲気で使用する場合」

塵埃の発生する雰囲気でリレーを使用する場合、塵埃がリ レー内部に侵入し、接点間に挟まって閉路しない原因となり ます。また、線屑などの導電物体がリレー内部に侵入した場 合、接触不良・回路短絡の原因となります。

このような場合、塵埃対策を実施するかシール形リレーをご 使用ください。

②駆動回路

●-②-1「動作形態について」

リレーは、動作形態によって以下のように分類されます。 使用目的に応じた適切なリレーを選択ください。

分類	項目	特長	代表機種例	備考	
シングル ステイブ (基準形)		コイルの無励磁、励磁に応じて接点 がオン、オフし、それ以外は動作要 素上特別な機能を持たないリレー	形G6B 形G2R	接点構成としてa、b、c接点があります。	
ラッチン	グ形	セットまたはリセットを行うパルス駆動電圧でもセット状態またはリセット状態を駆動電圧(パルス駆動電圧含む)が断たれた後も反転への入力があるまでその状態を保持できる機能を持ったリレー	形G6BU 形G6BK	セット、リセット状態を保持する機構として ①磁気保持形 ②機械的保持形 の2種類があります。 またセット、リセットのパルス電圧を印加す るコイルの種類として ①1巻線形 ②2巻線形 があります。	

特殊動作リレーの基本動作

分類 項目	基本回路	動作パターン	概要
2巻線 ラッチング・ リレー	(+) 〇	セット入力	セットコイルの入力パルスによって、磁気的あるいは、機械的に動作状態を保持し、リセットコイル側への入力パルスによって復帰状態となるリレーです。
1巻線 ラッチング・ リレー	(+) (+) (+) (+) (+) (+) (+) (+) (+) (+)	セット入力	セット入力パルスによって、磁気的に動作状態を保持し、リセット入力パルス(セット入力とは、逆極性の入力)によって復帰状態となるリレーです。

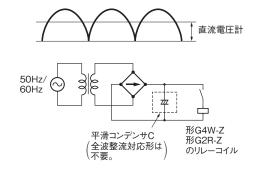
●-②-2「コイル仕様について」

コイル仕様は設計回路に合わせ正しく選定してください。コ イル仕様の選定が適切でない場合本来の性能が得られない だけでなく、過電圧印加などによるコイル焼損の原因となり ます。

●-②-3「交流操作形コイル仕様について」

各リレーの適用電源(定格電圧、定格周波数)をご確認の上、 正しく選定してください。

リレーによっては、ご使用になれない定格電圧、定格周波数 があります。選定が適切でない場合には、異常発熱や誤動作 の原因になります。


AC100Vの例

定格の呼称 *	適用電源 (定格電圧・定格周波数)	商品マーキングでの 表現	カタログでの 表現
1定格	AC 100V 60Hz	100VAC 60Hz	AC 100V 60Hz
2定格	AC 100V 50Hz AC 100V 60Hz	100VAC	AC 100V
3定格	AC 100V 50Hz AC 100V 60Hz AC 110V 60Hz	100/110VAC 60Hz 100VAC 50Hz または 100/(110)VAC	AC 100/(110)V
4定格	AC 100V 50Hz AC 100V 60Hz AC 110V 50Hz AC 110V 60Hz	100/110VAC	AC 100/110V

^{*}この呼称はJISなどで定められた呼称ではありません。

❶-②-4「全波整流対応形リレー」 (形G2R、形G4W)

直流操作形リレーは、リップル率により動作電圧変動、うな りの原因となります。そのため、全波整流の電源回路では、 リップル率低減のため、平滑コンデンサCを回路に付加してい ます。全波整流対応形リレーは、上記平滑コンデンサCが無い 回路でも、うなりなどの不具合を生じません。また、全波整 流対応形リレーのDC100V仕様のコイルへは、AC100Vを 全波整流した電源を直接入力できます。

●-②-5「長期連続通電する場合」

例えば、リレーを開閉動作しないで長期連続通電するような 回路(異常発生時のみ復帰しb側接点で警報を発するような 非常灯警報設備、異常点検回路など)で使用する場合には、無 励磁となる設計が望まれます。コイルへの長期連続通電は、 コイル自身の発熱によるコイルの絶縁劣化が促進されます。 また、 2-②-7項の「稀ひん度開閉での使用について」を併 せてご覧ください。

③負荷

●-③-1「接点定格について」

接点定格は、一般に抵抗負荷を基準に表示しております。ま た、接触方式、接点材質も掲載しておりますので負荷ならび に要求耐久性に応じて最適な機種をお選びください。

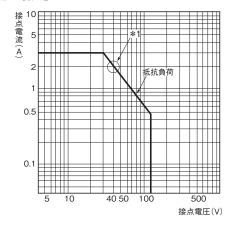
● 3-2 「開閉容量について」

各リレーの開閉容量の最大値やグラフを確認いただき、用途 に合ったリレーを選定ください。選定の目安として開閉容量 の最大値および耐久性曲線を活用ください。ただし、求めら れた値は目安値ですので、必ず実機にてご確認ください。開 閉容量の最大値および耐久性曲線グラフの見方は以下の通 りです。

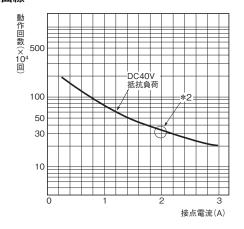
例えば、接点電圧V1が決まっている場合の最大接点電流I1は 特性データの交点で求めることができます。

また、逆にliが決まっていて、最大接点電圧Viを求めること もできます。次に求められたいから耐久性曲線データで動作 回数を求めることができます。

例えば、下記のような場合、


接点電圧=40Vなら

接点開閉電流=2Aです。……*1


また、最大接点電流2Aでの動作回数

は、約30万回です。……*2

開閉容量の最大値

耐久性曲線

● 3-3 「微小負荷レベルでの使用について」

微小負荷レベルで使用する場合は、負荷の種類、接点材質、 接触方式を考慮の上、適切な機種を選定ください。

微小負荷レベルでのご使用の場合、接点材質、接触方式によ り信頼性が異なってきます。例えば、シングル接点とツイン 接点とではツイン接点のほうが単純に並列冗長の期待度が 高いので信頼性が高くなっています。

信頼性	接触方	式
	シングル接点 Auメッキつき	
	ツイン接点 Auメッキつき	
▼ 高	クロスバ・ツイン接点 Au張り	

● 3-4 「接点材質について」

下表に各種接点材質の特長を示します。リレー選定の際の参 考としてください。

各種接点材質の特長

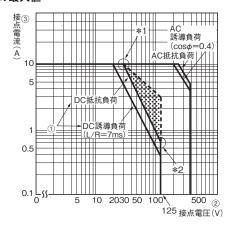
AgPd (銀パラジウム)	耐食性が良く、耐硫化性も良い。ドライサー キットにおいては、有機ガスを吸着してポリ マーを発生しやすいので金クラッドなどをする。
Ag (銀)	導電率、熱伝導率は金属中最大。低い接触抵抗 を示すが、欠点としては、硫化ガス雰囲気で硫 化皮膜を生じやすい。低電圧、低電流レベルで は接触不良になりやすい。
AgNi (銀ニッケル)	電気伝導度に関しては、Agに匹敵し、耐アーク性に優れる。
AgSnO ₂ (銀酸化錫)	AgCdOと同等以上の優れた耐溶着性を有している。Agと同じく硫化物雰囲気では硫化皮膜が生じやすい。
AgSnIn (銀・錫・インジューム)	耐溶着性、耐消耗性に優れる。
AgW (銀タングステン)	硬度、融点は高く、耐アーク性に優れ、溶着、 転移に対して強いが、接触抵抗が高く、耐環境 性に劣る。

● 3-5 「海外規格上の接点認定定格について」

海外規格認定品に捺印されている接点定格値は、規格上の認 定定格値であり、個別に定めるリレーの定格値の値とは、機 種によっては一致しません。各リレーの定格と動作回数をご 確認の上、ご使用の際には当社定格内で必ずご使用くださ U)

●-③-6「電気用品安全法(日本)について」

リレーは、電気用品安全法に定める電気用品ではありませ ん。リレーを電気用品安全法に定める電気用品に使用する場 合は、技術上の基準を満たすことを確認の上ご使用くださ い。


2回路設計に関して

①負荷回路

2-①-1「負荷開閉について」

リレーの実使用にあたっては、負荷の種類、環境条件や開閉条 件などにより、開閉容量・開閉耐久性、適用負荷領域が大きく 異なりますので必ず実機にてご確認の上ご使用ください。 各リレーの開閉容量の最大値は、下記のように記載しています。

開閉容量の最大値

開閉部(接点部)

負荷項目	抵抗負荷	誘導負荷 cosφ=0.4 L/R=7ms
定格負荷	AC 250V、10A DC 30V、10A	AC 250V、7.5A DC 30V、5A
定格通電電流	10)A
接点電圧の最大値	AC 380V、DC 125V	
接点電流の最大値	10)A

①抵抗負荷と誘導負荷

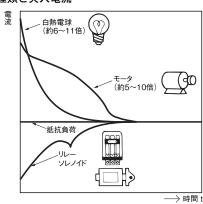
誘導負荷の開閉能力は、誘導負荷に貯えられる電磁エネル ギーの影響で抵抗負荷の開閉能力に比べ、低下します。

②接点回路の電圧(接点電圧)

直流負荷の場合、接点電圧が高くなると開閉能力が低下しま す。上図の例では、低い電圧側*¹のWmax.=300Wに対し て高い電圧側*2のWmax.=75Wと小さくなっています。 この差は、接点電圧が高いために開閉能力が低下した分です。 接点間には、規定以上に電圧もしくは電流が印加されると、

- 1. 負荷開閉により発生するカーボンが、接点周辺に堆積し、 絶縁劣化を発生する原因となります。
- 2. 接点溶着、ロッキングなどの接点障害発生の原因となります。

2-①-2「開閉耐久性について」


開閉耐久性は、コイルの駆動回路、負荷の種類、開閉ひん度、 開閉位相、周囲雰囲気などにより異なりますので必ず実機に てご確認の上、ご使用ください。カタログ記載の開閉耐久性 は、下記条件のものです。

コイル駆動回路	コイルへの定格電圧印加 (直投法〈瞬時オン、瞬時オフ〉による)		
負荷の種類	定格負荷		
開閉ひん度	個別定格による		
開閉位相(AC負荷の場合)	ランダム投入、しゃ断		
周囲雰囲気	JIS C5442の標準試験状態による		

③接点回路の電流(接点電流)

接点の開路時および閉路時の電流は接点に重大な影響を与 えます。例えば、負荷がモータやランプのときは閉路時の突 入電流が大きいほど、接点の消耗量、転移量が増大し、接点 の溶着、転移による接点ロッキングといった支障の原因とな ります。(下図に代表的な負荷と突入電流の関係を示します。) また、直流電源の負荷で規定以上の高電流で使用した場合、 接点アークの継続・短絡による開閉不能の原因となります。

直流負荷の種類と突入電流

交流負荷の種類と空入雷流

文派貝何の惶殺と大人电流						
負荷の種類	突入電流/ 定常電流	波形				
yレノイド □ □	約10倍					
白熱電球	約10~15倍	+				
₹-\$	約5~10倍	一字 一字 一字 一字 一字 一字 一字 一字				
リレー ()	約2~3倍					
コンデンサ	約20~50倍					
抵抗負荷	1					

2-①-3「故障率について」

カタログに記載された故障率は、規定の条件で試験したとき の結果から求めたもので、保証値ではありません。この値は 開閉ひん度、周囲雰囲気、期待する信頼性水準によって変化 しますので、実使用条件にて実機確認を必ず実施ください。

2-①-4 「サージキラーについて」

サージキラーを用いると接点の耐久性を延ばしたり、ノイズ の防止およびアークによる炭化物や硝酸の生成を少なくで きるなどの効果があります。下表にサージキラーの代表例を 示しますので回路設計上の目安としてください。

- 1. 負荷の性質やリレーの特性のばらつきなどにより効果が 得られなかったり、かえって逆効果となる場合もありま すので、必ず実負荷にてご確認の上、ご使用ください。
- 2. サージキラーを用いた場合、復帰時間(しゃ断時間)が遅く なる原因となりますので、必ず実負荷にてご確認の上、ご 使用ください。

サージキラーの代表例

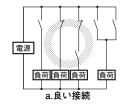
項目	回路例	適	用	特長、その他	素子の選定の目安	
分類	凹陷例	AC	DC	行及、その他	糸丁の速定の日女	
CR方式	* 電源 C R 誘導負荷	* ^	0	*AC電圧で使用する場合 負荷のインピーダンスがC、Rのインピー ダンスより十分小さいこと。接点が開路 のとき、C、Rを通して、誘導負荷に電流 が流れます。	C、Rの目安としては C:接点電流1Aに対し0.5~1(μF) R:接点電圧1Vに対し0.5~1(Ω) です。ただし負荷の性質や特性のバラツキなどにより異なります。	
	*	0	0	負荷がリレー、ソレノイドなどの場合は 復帰時間が遅れます。	- Cは接点開離時の放電抑制効果を受けもち、Rは次回投入時の電流制限の役割ということを考慮し、実験にてご確認ください。 Cの耐電圧は一般に200~300Vのものを使用してください。AC回路の場合はAC用コンデンサ(極性なし)をご使用ください。	
ダイオード方式	電源 誘導負荷	×	0	誘導負荷に貯えられた電磁エネルギーを並列ダイオードによって、電流の形で誘導負荷へ流し、誘導負荷の抵抗分でジュール熱として消費させます。この方式はCR方式よりもさらに復帰時間が遅れます。	ダイオードは逆耐電圧が回路電圧の10倍以上のもので順方向電流は負荷電流以上のものをご使用ください。電子回路では回路電圧がそれほど高くない場合、電源電圧の2~3倍程度の逆耐電圧のものでも使用可能です。	
ダイオード + ツェナー ダイオード方式	電源	×	0	ダイオード方式では復帰時間が遅れすぎ る場合に使用すると効果があります。	ツェナーダイオードのツェナー電圧は、電源電圧程度の ものを使用します。	
バリスタ方式	▼電源	0	0	バリスタの定電圧特性を利用して、接点間に高い電圧が加わらないようにする方式です。この方法も復帰時間が多少遅れます。 電源電圧が24~48V時は負荷間に、100V~200V時は接点間のそれぞれに接続すると効果的です。	バリスタのカット電圧Vcは下記の条件内になるように選びます。交流では√2倍することが必要です。 Vc>(電源電圧×1.5) ただし、Vcを高く設定しすぎると高電圧へのカットが働らかなくなるため効果が弱くなります。	

なお、次のようなサージキラーの使い方は避けてください。

しゃ断時のアーク消弧には非常に 効果がありますが、接点の開路時 Cにエネルギーが蓄えられている ため、接点の投入時に短絡電流が 流れるので、接点が溶着しやすい。

しゃ断時のアーク消弧には非常に 効果がありますが、接点の投入時 にCへの異常な充電電流が流れる ので接点が溶着しやすい。

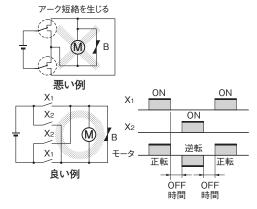
最新情報は www.fa.omron.co.jp


直流誘導負荷は、抵抗負荷に比べ開 诵常. 閉が困難とされていますが、適切なサ キラーを用いると抵抗負荷と同程度まで性 能が向上します。

2-①-5「外部回路からのサージ対策について」

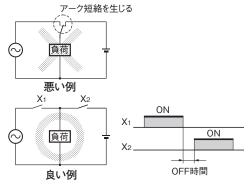
雷サージなどのリレーの耐電圧値を超えるサージが印加さ れる可能性のあるところには、サージアブソーバなどの保護 回路を付加ください。リレーの耐電圧値を超える電圧が印加 されるとコイルー接点間または同極接点間にせん絡および 絶縁劣化を生じる原因となります。

2-①-6「多極リレー(2極以上のリレー)の負荷接続について」


多極リレーの負荷接続は電位差回路にならないように、下図aの方 法で接続してください。電位差回路での使用は、接点間にアークに よる短絡が生じ、リレーや周辺機器が破壊される原因となります。

2-(1-7 「モータの正逆切り替えの場合 |

モータの正逆切り替えの場合、電位差回路となりますので複 数のリレーを用い、タイムラグ(オフ時間)を必ず設けてくだ さい。

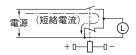

②-①-8 「多極リレー(2極以上のリレー)での電源両切りについて」 多極リレーで電源の両切り回路を構成される場合、機種の選

定は、リレーの構造、異極間の沿面・空間距離、アークバリ アの有無などを考慮の上、実施ください。また、選定後実機 にてご確認の上、ご使用ください。誤選定の場合、定格内の 負荷であっても、特にしゃ断時のアークによって異極間が短 絡し、リレー周辺機器の焼損、破壊の原因になります。

2-①-9「a・b接点間のアークによる短絡について」

a、b接点をもつリレーで、a、b接点の間隔が小さいリレー は、接点の動作や復帰時の過渡時にa、b接点が機械的に同時 接触したり、大電流を開閉するときなどはアークによる接点 間短絡が起こる原因となります。

a、b、c接点を短絡したときに過電流が流れたり焼損する回 路構成はしないでください。



2-①-10「1a1b接点リレーの1c使用について」

絡電流が流れる場合があります。

a、b、c接点が短絡接続すると、それによって、過電流が流 れたり、焼損するという回路構成はしないでください。 また、lalbリレーにおいてモータの正逆を実施される場合も短

a接点とb接点の非同時動作性による接点MBB化による短絡 や、a、b接点の間隔が小さいとき、大電流を開離するときな どにアークによる接点間短絡の発生が考えられます。

2-①-11 「異なる容量の負荷接続について」

1個のリレーで大きな負荷と微小負荷を同時に開閉すること はしないでください。

大きな負荷を開閉したとき発生する接点飛散物により微小 負荷開閉用接点の清浄性が失われる原因となり、微小負荷開 閉接点で接触不良を生じる場合があります。

2-1-12 「接点の転移(移転)について」

接点の転移現象というのは、直流負荷開閉において、片方の 接点が溶融あるいは蒸発して他方の接点に転移していくこと で開閉回数の増加と共に凹凸が生じ、ついにはこの凹凸が ロックされた状態になり、あたかも接点溶着を起こしたよう になることです。これは直流の誘導または容量負荷で電流値 の大きい場合や突入電流の大きい場合(数A~数10A)、すな わち、接点閉路時に火花の出るような回路で多く発生します。 この対策としては接点保護回路の採用や転移に強いAgW、 AgCuといった接点の採用があります。

このような負荷の場合には、実機での確認試験を必ず実施し ておくことが必要です。

②入力回路

2-2-1 「最大許容電圧について」

コイルの最大許容電圧は、コイル温度上昇とコイル絶縁皮膜材料 の耐熱温度(耐熱温度を超えるとコイルの焼損やレアショートの 原因となります。)から求められる他に、絶縁物の熱的変化や劣 化、さらに他の制御機器を損なわないこと、人体に害を与えない こと、火災の原因にならないことなど重要な制約を受けています ので、カタログ記載の規定値を超えないようにしてください。 最大許容電圧は、リレーコイルに印加できる電圧の最大値 で、連続許容値ではありません。

2-2-2「コイル印加電圧について」

コイルには定格電圧を印加してご使用ください。動作電圧以 上の電圧印加でリレーは動作しますが、規定の性能を得るた めには、コイルに定格電圧を印加して、ご使用ください。

2-2-3「コイル温度上昇による動作電圧の変化について」

ホットスタート状態および周囲温度が+23℃を超える状態 ではカタログ記載の動作電圧の規定値を満足できない場合 がありますので、実使用状態での確認を実施してください。 コイルの温度上昇により、コイル抵抗が増加し、動作電圧が 高くなります。銅線の抵抗温度係数は、1℃当たり約0.4% で、この割合でコイル抵抗が増加します。

カタログ記載の動作電圧・復帰電圧の規定値はコイル温度が +23℃のときの値です。

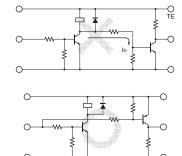
2-②-4「入力電圧の印加電圧波形について」

コイルに印加される電圧がゆるやかに上昇または降下するよ うな使い方はせず、電源波形は矩形波(方形波)を原則とします。 また、限界リレー的(電圧または電流がある限界値に達した 瞬間にオン(オフ)する使用)な使い方もしないでください。 このような回路では、接点の同時動作性が確保できない(多 極リレーにおいて、接点動作に時間的ばらつきが生じるこ と)、動作電圧が動作ごとに異なるなどのシーケンスの誤動 作の原因となります。また、動作、復帰時間が長くなり、接 点の耐久性低下や溶着の原因となります。必ず直投法(瞬時 オン、瞬時オフ)でご使用ください。

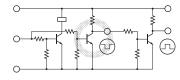
2-2-5 「コイルオフ時のサージ防止について」

コイルオフ時にコイルより発生する逆起電圧は、半導体素子 の破壊や装置の誤動作の原因となります。

対策として、コイル両端にサージ吸収回路を付加してくださ い。なお、サージ吸収回路を付加した場合、リレーの復帰時 間が長くなりますので、実使用回路にてご確認の上、使用く ださい。


なお、ダイオードのくり返し尖頭逆電圧および直流逆電圧 は、外部からのサージも考慮して余裕のあるもの、また平均 整流電流はコイル電流以上のダイオードをご使用ください。 また、コイルに並列に誘導負荷が接続されるなど、電源中に サージが含まれている条件下での使用はしないでください。 付加したコイルサージ吸収用ダイオードが破損する原因と なります。

2-2-6「リレーコイルへの漏れ電流について」


リレーコイルへ漏れ電流を流さないでください。改善例①、 ②のような回路にしてください。

漏れ電流を生じる回路の例

改善例①

改善例②: 入力と同位相の出力値が必要な場合

2-②-7 「稀ひん度開閉での使用について |

微小負荷において開閉ひん度が少ない使い方の場合には、定 期的に接点の通電検査を実施してください。長期間接点の開 閉が行われない場合、接点表面での皮膜の生成などにより、 接触不安定の原因となります。

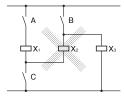
また、微小負荷において開閉ひん度が少ない使い方の場合リ レーの接点の種類はAuクラッドのクロスバ・ツイン接点型の リレーをご使用の上、万一の接触不良や断線にそなえて フェールセーフの回路設計をお願いします。なお、接点の通 電検査のひん度は、使用環境、負荷の種類などによって異な ります。

②-②-8「電源からの配線距離が長い場合」

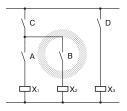
電源からの配線距離(L)が長い場合には、必ずリレーコイル 端子の両端の電圧を測定の上、規定の電圧が印加されるよう 電源電圧の設定を行ってください。

動力ラインなどと並行して長距離の配線をするとコイル入 力電源がOFFのときに、電線の浮遊容量からリレー両端に電 圧を生じ復帰不良の原因となります。

このような場合には、コイル両端にブリーダ抵抗を接続して ください。

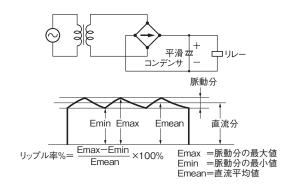

2-2-9「シーケンス回路を構成する場合」

シーケンス回路を構成する場合、回り込みによる誤動作など の異常動作とならないようにしてください。


シーケンス回路を作成する際のポイントとして下図のよう に2本の電源線のうち必ず上側のラインを⊕、下側のライン を○(交流回路であっても同じ考え方をしてください)とし、 必ず⊕側に接点回路(リレー接点など)を接続するようにして ください。

また、○側に負荷回路(リレーコイル、タイマコイル、マグネッ トコイル、ソレノイドなど)を接続するようにしてください。 下図は、回り込み回路の例です。接点A、B、Cが閉じて、リ レーX1、X2、X3が動作した後、接点B、Cが開くとA→X1 →X2→X3の直列回路が形成され、リレーのうなり、復帰不 良の原因となります。

下図は上図を修正した正しい回路例です。なお、直流回路に おいては、ダイオードによる回り込み防止が可能です。



2-2-10 「動作・復帰電圧、動作復帰時間などの各特性が 重要である場合」

動作・復帰電圧、動作・復帰時間などの各特性が重要である 場合は、当社営業担当者までご相談いただき仕様書などによ る確認をお願いいたします。

2-2-11 「直流操作形リレー使用の場合 (1)入力電源のリップルについて」

直流操作形のリレーの操作電源は、リップル率5%以下の電 源をご使用ください。コイルへの直流印加電圧のリップバ脈 流)の増大は、うなりの原因となります。

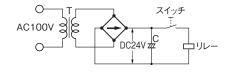
②-②-12 「直流操作形リレー使用の場合 (2) コイル極性について」

カタログの各リレーの端子No.と印加電源の極性をご確認の上、正しく接続してください。

コイルへのサージキラー用ダイオードを付加したリレーや動作表示付きリレーなどの場合、コイル印加電源の極性を逆接続するとリレーの動作不良、ダイオードの破壊、動作表示灯の不点灯の原因になります。また、ダイオード付きリレーの場合は、回路短絡の発生により回路内の機器の破損の原因となります。

なお、永久磁石を磁気回路に使用した有極リレーの場合、コイルへの印加電源を逆接続した場合、リレーは動作しません。

②-②-13 「直流操作形リレー使用の場合 (3) コイル印加電圧不足について」


コイルへ印加する電圧が不足しますと、リレーが動かないか、あるいは動作不安定となり、接点の耐久性低下や溶着などの接点障害の原因となります。

特に大型モータなど、電源投入時に大きな突入電流が発生する負荷を動作させた瞬間に、リレーコイルへの印加電圧が低下する場合があります。

また、電圧不足状態にてリレーが動作している場合は、仕様 書およびカタログなどで規定しているスペック未満の振動・ 衝撃値でもリレーが誤動作する原因となります。従って、リ レーのコイルへは、定格電圧を印加してください。

②-②-14 「交流操作形リレー使用の場合 (1)入力電源の電圧変動について」

電源電圧の変動は、各リレーが完全に動作できる電圧がコイ ルへ印加されるようにしてください。リレーが完全に動作し ない電圧をコイルに印加(連続印加)した場合、コイルが異常 発熱し、コイル焼損の原因となります。また、リレーの操作 回路の電源と同じラインにモータ、ソレノイド、トランスな どが接続されていると、それらが動作したとき電源電圧が低 下し、そのためリレーの接点がバイブレーションを起こして 接点の焼損、溶着、あるいは自己保持はずれの原因となりま す。特に、小型トランスを介しているときやトランスの容量 に余裕のないとき、配線の長い場合、あるいは家庭用、商店 用などで配線の細い場合などもこのような使い方になりま す。このようなトラブルが発生した場合には、電圧の変化状 況をシンクロスコープなどで正しく調整し、その対策を講じ るとともに、それらに適したリレーを採用するか、直流回路 に変換して下図のような回路でコンデンサによる電圧変動 の吸収を実施してください。

②-②-15 「交流操作形リレー使用の場合 (2)動作時間について」

動作時間のばらつきが問題とならない回路設計を実施してください。

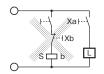
交流操作形リレーの場合は、コイル入力電圧の投入位相によって動作時間がばらつきます。小型のもので約半サイクル (10ms)のばらつきがあり、大型のもので約 1 サイクル (20ms)のばらつきがあります。

②-②-16 「交流操作形リレー使用の場合 (3) コイル印加雷圧波形について

交流操作形リレーでは、コイルに印加する電圧は正弦波形 (sine curve)であることが必要です。商用電源をそのままコイルへ印加する場合は問題ありませんが、インバータ電源を使用した場合、その装置の波形歪みによってうなりやコイルの異常発熱の原因となります。

交流コイルは、くま取りコイルによってうなりを停止する構造となっていますが、これは、波形歪みがこの現象を起こさせないようにするためです。

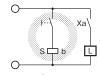
2-2-17 「ラッチングリレー使用の場合


(1)直流操作形ラッチングリレーのコイル極性について」 カタログの各リレーの端子No.と印加電源の極性をご確認の 上、正しく接続してください。

直流操作形のラッチングリレーの場合、印加電圧極性が逆になると、誤動作やセット不良、リセット不良の原因となります。

②-②-18 「ラッチングリレー使用の場合

(2) 駆動回路について」


自己接点での励磁は正常な保持をしない原因となります。下 図のような回路では、使用しないでください。

□b:ラッチングリレー Xb:ラッチングリレーb接点 Xa:ラッチングリレーa接点

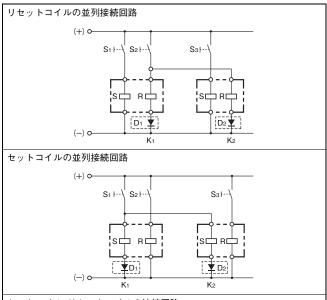
S :セットコイル

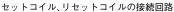
下図のようにしてください。

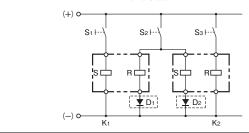
□b:ラッチングリレー Xa :ラッチングリレーa接点 S :セットコイル

2-2-19 「ラッチングリレー使用の場合

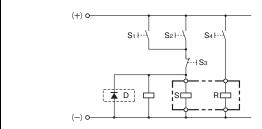
(3)セット、リセットコイルへの同時印加について」


セットコイルとリセットコイルへの電圧の同時印加はしないでください。セットコイルとリセットコイルへ同時に長時間電圧を同時印加された場合、コイルの異常発熱や焼損あるいは異常動作などの原因となります。


2-2-20 「ラッチングリレー使用の場合


(4) 直流入力の回路設計について」

セットコイルあるいはリセットコイルに並列に他のリレーのコ イルやソレノイドを接続した場合、リレーのコイルやソレノイ ドの逆起電圧により動作不良の原因となります。対策としては、 回路変更または下図のようにダイオードを接続してください。


回路上の注意

セットコイルに他のリレーコイルが並列に入る回路

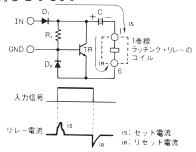
2-2-21 「ラッチングリレー使用の場合

(5) ラッチングリレーの保持力の経時減衰について」

磁気保持形ラッチングタイプリレーをセットのまま長期間 使用された場合、磁気力は経年変化により減衰し、保持力の 低下によりセット状態が解ける場合があります。これは半硬 質磁性材料の性質でもあり、経過時間に対する減衰率は周囲 環境(温度、湿度、振動、外部磁界の有無)により異なってき ます。1年に1回以上メンテナンス(一度リセットし再び定格 電圧を印加してセットさせる)を実施してください。

2-2-22「負荷開閉ひん度について」

負荷開閉の可能な動作ひん度は、負荷の種類・電圧・電流に よって異なりますので、必ず実機にてご確認ください。負荷 開閉が不可能な高ひん度開閉を実施された場合、接点間の アーク接続・短絡により開閉不能の原因となります。


2-②-23 「交流負荷開閉における位相同期について」

開閉時の位相はランダムになるように開閉ください。リレー の駆動タイミングと負荷電源の位相が同期した場合、接点溶 着、ロッキングなどの接触障害の原因となります。実機での 確認を行ってください。

カタログ記載の定格値は、ランダム開閉によるものです。

2-②-24 「1巻線ラッチングリレーの省消費電力ドライブ回路例 Ⅰ

- ・通常の開閉入力パルスで一般のリレー的機能とするドラ イブ回路例です。
- ・セット時は、D1、C、ラッチングリレー、D2を介してCの突 発的充電電流にてリレーをセットさせます(ラッチさせる)。
- ・リセット時は、TR、C、ラッチングリレーを介してCの放 電電流で行うものです。

注. 使用に関してはセット、リセット状態を確認の上、回路定数を考慮してください。

③実装設計

2-3-1「リード線径について」

接続に関しては、負荷電流の大きさで線径が決定します。目安 として下表に示す断面積以上のリード線をご使用ください。 リード線が細い場合、リード線の異常加熱により焼損の原因となります。

許容電流(A)	断面積(mm²)
6	0.75
10	1.25
15	2
20	3.5

2-3-2「ソケットを用いた場合」

リレーとソケットの定格を確認いただき、低い側の定格内に てご使用ください。リレーとソケットの定格値が異なってい る場合があり、高い側の定格で使用されますと、接続部の異 常発熱、焼損の原因となります。

2-3-3「取りつけ方向について」

機種により取りつけ方向を指定しているものがありますので、 カタログにて確認の上、正しい取りつけ方向でご使用ください。

2-③-4「マイコンなどが近接する場合」

マイコンなど外来ノイズに弱い機器が近接する場合、ノイズ対 策を考慮したパターン設計や回路設計を実施してください。 マイコンなどを使用してリレーを駆動し、リレー接点で大電流を開閉する場 合、アークにより発生するノイズがマイコンの誤動作の原因となります。

2-3-5 「ラッチングリレーの実装について」

同一パネル、基板上の他の機器(リレーなど)から動作、復帰 時に発生する振動、衝撃がカタログ記載値を超えないように してください。ラッチングリレーのセット(またはリセット) 状態がはずれる原因になります。

ラッチングリレーは、リセット状態にて納入しておりますが、異常な振 動、衝撃が加わった場合、セット状態になっていることがあります。必 ず、ご使用時にあらかじめリセット信号を印加した後で使用ください。

❸使用環境および保管環境に関して

❸-1「使用・保管・輸送環境について」

使用・保管・輸送時は直射日光を避け、常温・常湿・常圧に 保ってください。

- ・高温多湿の雰囲気中で長期間放置あるいは使用すると接 点表面に酸化皮膜や硫化被膜が生成され、接触不良などの 不具合の原因となります。
- ・高温多湿の雰囲気中で周囲温度が急激に変化するとリレー内 部で結露が発生し、この結露により絶縁不良や絶縁材料表面 でのトラッキング(通電現象)による絶縁劣化が発生する場合 があります。

また湿度の高い雰囲気中において、比較的大きなアーク放 電がともなう負荷開閉ではリレー内部に青緑色の腐食生 成物が発生する場合があります。これらを防ぐために、湿 度の低い雰囲気中での使用をおすすめします。

・リレーを長期にわたって保管された後使用される場合は、 通電検査を実施後使用ください。リレーを全く使用しない で保管しておくだけでも、接点表面の化学的変化などによ り接触不安定や接触障害を発生したり、端子のはんだ付け 性が低下したりする場合があります。

❸-2「使用雰囲気について」

- ・引火性ガスや爆発性ガス雰囲気中では、絶対に使用しない でください。リレー開閉時に発生するアークや発熱により 発火、爆発を誘発する恐れがあります。
- ・周囲に塵埃の存在する雰囲気での使用はしないでくださ い。リレー内部に塵埃が浸入し接点接触不良発生の原因と なります。やむを得ずこのような雰囲気中で使用する場 合、リレーを密封したプラスチックシールタイプ、金属 ハーメチックシールタイプのものを検討ください。

❸-3 「悪性ガス雰囲気中(シリコーンガス、硫化ガス、有機 ガス) での使用・リレー近傍でのシリコーン含有物の使 用について」

周囲にシリコーンガスや硫化ガス(SO2、H2S)、有機ガスの 存在する雰囲気、シリコーン含有物の近傍では使用しないで ください。

硫化ガスや有機ガス雰囲気中でリレーを長期間放置あるいは 使用される場合、接点表面が腐食し接触不安定や接触障害を 発生したり、端子のはんだ付け性が低下する場合があります。 また、シリコーンガス雰囲気中でリレーを長期間放置あるい は使用される場合や、リレー近傍でシリコーン含有物(シリ コーンゴム、シリコーングリス、シリコーンオイル、シリコー ンコーティング剤など)を使用した場合、接点表面に酸化シリ コンが生成して接触不良の原因となる場合があります。

なお、以下の表の処理を行うと悪性ガスの影響が低減されま す。

項目	処理
外箱・ハウジング部	パッキンなどを用いたシール構造にする。
リレー	プラスチック・シールリレーあるいはハーメ チック・シールリレーを使用する。 ただしシリコーンの影響が考えられる場合は ハーメチック・シールリレーを使用する。
基板・銅箔部	コーティング処理をする。
コネクタ部	金メッキ、あるいはロジウムメッキ処理をする。

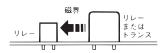
❸-4「水や薬品、溶剤、油の付着について」

水や薬品、溶剤、油がかかる雰囲気中での使用・保管はしな いでください。リレーに水や薬品がかかった場合、さび・腐 食・樹脂の劣化及びトラッキングによる焼損の原因となりま す。また、シンナーやガソリンなどの溶剤付着は、マーキン グ消えや部品劣化の原因となります。

透明ケース(ポリカーボネイト製)に油が付着すると、ケースの白濁 あるいはケースにクラック(ひび割れ)が発生する原因となります。

3-5「振動・衝撃について」

定格値以上の振動・衝撃が、リレーに加わることのないよう にしてください。


異常な振動・衝撃が加わると誤動作の原因となるだけでな く、リレー内部の部品の変形、破損などにより動作不良の原 因となります。なお、リレーに異常な振動を加えないために も、振動を発生する機器類(モータなど)の影響を受けない場 所、方法にて取りつけ(実装)ください。

❸-6「外部磁界について」

800A/m以上の外部磁界の存在する場所では使用はしない でください。

強い外部磁界の存在する場所で使用されますと誤動作の原 因となります。

また、開閉時に接点間に発生するアーク放電が磁界により押 し曲げられ、せん絡し、絶縁不良を生じる原因となります。

❸-7「外部荷重について」

最新情報は www.fa.omron.co.jp

リレーに外部からの荷重が加わる状態での使用あるいは保管はし ないでください。リレーの初期性能を保てない原因となります。

❸-8 「磁性粒の付着について」

リレーを磁性粒の多い雰囲気中で使用しないでください。 磁性粒がケースに付着することにより性能を維持できない 原因となります。

●リレーの実装作業に関して

①プリント基板用リレー

④-①-1「超音波洗浄について」

超音波洗浄対応形でないリレーの超音波洗浄は実施しないでくだ さい。超音波洗浄された場合、超音波によるリレー内部構成品の共 振による接点スティッキング、コイル断線の原因になります。

②共通項目

4-②-1 「タブ端子へのはんだ付け禁止について」

タブ端子へのリード線のはんだ付けはしないでください。リレーの構 造変形およびフラックスの浸入による接触不良の原因になります。

4-②-2「ケース取りはずし、端子カットについて」

ケースの取りはずしや端子カットは絶対にしないでくださ い。ケースの取りはずしや、端子カットは、初期性能を損な う原因になります。

④-②-3「端子を変形させた場合」

誤って変形させた端子を無理に修正して使用しないでくだ さい。このような場合、リレーに無理な力が加わり、初期性 能が維持できなくなります。

4-2-4「リレーの交換·配線作業について」

リレーを交換・配線作業をする際には、必ずコイルおよび負荷側の 電源をOFFにして、安全をご確認の上作業を実施してください。

4-②-5「コーティング、パッキングを実施する場合」

リレー内部にフラックス、コーティング剤、パッキング樹脂 などが流れ込まないようにしてください。リレー内部にフ ラックス、コーティング剤、パッキング樹脂などが侵入する と、接触不良、動作不良などの原因になります。

コーティング・パッキングを実施する場合は、プラスチック シール形リレーをご使用ください。

また、コーティング剤、パッキング樹脂はシリコンを含まな いものをご使用ください。

コーティング剤の種類

項目 種類	プリント基板への 可否	特徴
エポキシ系	可	絶縁性良好。 作業性にやや難点がある。
ウレタン系	可	絶縁性、塗布作業良好。 溶剤がシンナー系のものが多いので 作業時リレーに付着しないこと。
シリコン系	否	絶縁性、塗布作業良好。 シリコンガスが、リレー接触不良の 原因になる。

⑤リレーの取り扱いに関して

⑤-1 「振動・衝撃について」

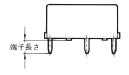
リレーは、精密部品ですので実装前後にかかわらず、規格値を超える振動・衝撃を加えないでください。保証可能な振動・衝撃 値はリレー個別に定めていますので、カタログの各リレーの項をご確認ください。

リレーに異常な振動・衝撃を加えられたりした場合、初期の性能を維持できなくなります。

また、スティック包装状態においても同様に定格値を超える振動・衝撃を加えないでください。

③プリント基板用リレーに関して

6 1 「プリント基板の選定 (1) 基板の材質」


基板の材質には、大きく分けてエポキシ系とフェノール系があります。それぞれ下記のような特長があります。用途を考慮の上 選定ください。リレー搭載基板としては、はんだクラック対策の面からもエポキシ系をおすすめします。

材質	エポキシ系		フェノール系
項目	ガラス布基材エポキシ (GE)	紙基材エポキシ (PE)	紙基材フェノール (PP)
電気的特性	・絶縁抵抗が高い。 ・吸湿による絶縁抵抗の低下が少ない。	・GEとPPの中間	・初期は高い絶縁抵抗をもっているが、湿気 により低下しやすい。
機械的特性	・温・湿度による寸法変化が小さい。 ・スルーホール基板、多層基板に適す。	・GEとPPの中間	・温・湿度による寸法変化が大きい。 ・スルーホール基板に適さない。
経済性	・高価	・やや高価	・安価
用途	高信頼性を必要とする場合など	GEとPPの中間的な用途	環境が比較的良く配線密度の少ない場合など

6-2「プリント基板の選定 (2)基板の厚さ」

基板の大きさ、基板に実装する部品の重量、基板の取りつけ方 法、使用温度などにより基板のそりが発生すると、リレー内部 の機構が歪みを生じ、規定の性能を劣化させる原因となります。 従って、材質も考慮した上で板厚を決定してください。

基板の厚みは、t=0.8、1.2、1.6、2.0mmが一般的です が、リレーの端子長さを考慮した場合、1.6mmが最適です。

6-3 「プリント基板の選定 (3) 端子穴径およびランド径 |

穴径およびランド径は、使用のリレーのプリント基板加工寸 法図をもとの下表を目安に選定してください。ただし、ス ルーホールメッキ処理のランド径は、下表の値よりも小さく することが可能です。

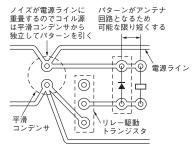
穴径 Φ	(mm)	最小ランド径 φ (mm)
公称值	公差	販小フント径φ (mim)
0.6		1.5
0.8		1.8
1.0	±0.1	2.0
1.2		2.5
1.3		2.5
1.5		3.0
1.6		3.0
2.0		3.0

⑥-4 「取りつけ間隔について」

①周囲温度

リレーの取りつけ間隔は、個別カタログをご確認の上、個別 に取りつけ間隔を規定されているものについては、必ず規定 値以上の間隔をあけて実装ください。

リレーを2個以上取りつけると、相互作用により異常に発熱 する場合があります。また、カードラック取りつけなどによ り基板を多数枚重ねて取りつける場合も同様に温度の異常 上昇の原因となります。リレーの取りつけにおいては、熱が こもらないように間隔をあけて、リレーの周囲温度が規定の 使用温度範囲内になるようにしてください。


②相互磁気干渉について

リレーを2個以上取りつけると、個々のリレーから発する磁 界が干渉することにより、リレーの特性が変化する場合があ ります。必ず、実機にてご確認の上、ご使用ください。

6-5 「ノイズ対策のためのパターン設計について

①コイルからのノイズ

コイルをオフ時、コイル両端に逆起電力が発生して、スパイ ク状のノイズが発生しますので、サージ吸収用ダイオードを 接続ください。また、ノイズ伝播を少なくするための回路例 を以下に示します。

②接点からのノイズ

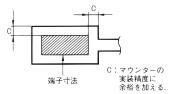
接点部でモータ、トランジスタなどサージを生ずる負荷を開 閉している場合は、電子回路にノイズを伝達する可能性があ りますので、パターン設計時に以下の3点を考慮ください。

- 1. 接点部のパターンに信号伝達用パターンを近づけない。
- 2. ノイズ源となるパターンは、長さを短くする。
- 3. グランドのパターンを設けるなどして電子回路から遮へ いする。

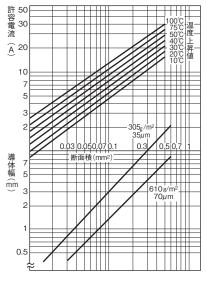
③高周波用パターン

取り扱う周波数が高くなると、パターン相互の干渉も大きく なります。従って、ノイズ対策を考慮した高周波用パターン 形状、ランド形状を設計ください。

6-6 「ランド形状について」

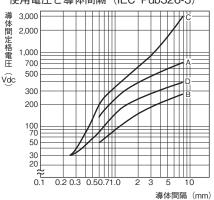

(1)はんだフィレットが均一になるためにランド部は、銅箔 パターンの中心線上になるようにしてください。

(2)自動はんだ後、手はんだ付けによる部品およびリレーを 後づけする場合、ランドの一部に切り欠け部を設けるこ とで、端子穴を確保できます。


(3)表面実装用リレーの場合、マウンターの実装精度を考慮してランドの寸法を決定ください。

3-7「パターンの導体幅および厚さについて」

銅箔の厚みは、基準として 35μ m、 70μ mがあり、導体幅は通電電流と許容温度上昇により決定されます。簡易的な目安として下記グラフをご活用ください。


導体幅と許容電流 (IEC Pub326-3による)

6-8「パターンの導体間隔について」

導体間隔は、絶縁特性およびそれにかかわる環境ストレスの度合いなどにより決定されます。一般的には、各グラフを参考にしてください。ただし、安全規格(電気用品安全法、UL、CSA、VDEなど)に従って製作される場合には、それらの規格が優先されます。また、導体間隔を大きくとる方法として、多層基板を使用する方法もあります。

使用電圧と導体間隔(IEC Pub326-3)

A=コーティングなしで高度3,000m以下 B=コーティングなしで高度3,000mを超え15,000m以下 C=コーティングありで高度3,000m以下

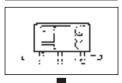
D=コーティングありで高度3,000mを超える場合

6-9「プリント基板の固定方法について」

プリント基板は、外部振動・衝撃が基板と共振することにより増幅したり、振動持続時間が長くなる場合があります。下表を考慮した固定方法を実施ください。

取りつけ状態	対策
ラック取りつけ	ガタのないガイドにする。
ねじ取りつけ	・ねじでしっかりと取りつける。リレー取りつけなどの重量物は、ねじ締めつけ部の周辺に配置する。 ・音響製品などのショックノイズを嫌うものは、締めつけ部にゴムワッシャなどの緩衝材を入れる。

⑥-10「プリント基板用リレーの自動実装について」

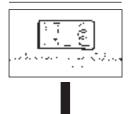

①スルーホール形

プリント基板への実装については、各々の工程で次の配慮をお願いします。 なお、リレー個別に実装上の注意が必要な場合がありますので、 各リレーの"正しい使い方"の欄もご覧ください。

工程1

リレー装着

①端子を曲げて自立端子型にしないでください。 リレーの初期性能が維持できない原因となります。 ②プリント基板の加工は、プリント基板加工図通り正しく 行ってください。


自動実装の可否

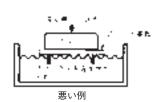
構造 種類	ケース入り形	耐フラックス形	プラスチック・ シール形
スティップ 梱包タイプ	否	可	可

工程2

フラックス塗布

①ケース入り形は、フラックス浸入対策が施してありません。従って右図のようにフラックスをスポンジに含ませ、その上からプリント基板を深く押しつける方法にした場 フラックスがリレー内に入りますので、絶対にやめて ください。

また、深く押しつけますと耐フラックス形でもフラックス がリレー内に入ることがありますのでご注意ください。

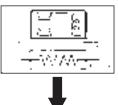

②フラックスは、リレー構成材の適合性から非腐食性のロジ ン系をご使用ください。 フラックスの溶剤は化学作用の少ないアルコール系をご使

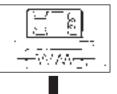
用ください。フラックスがリレー内部に浸入しないように 薄く均一に塗布してください。 フラックスがプリント基板より上にあふれないよう位置調

整してください。

こう。 また、ディップ式塗布につきましてもフラックス液面位置 を確実にしてください。 ③フラックスがリレー端子以外に付着しないようにしてく

ださい。リレー床面等に付着しますと絶縁劣化の原因と なります。




ディップ式塗布の可否

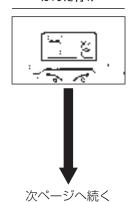
ケース入り形	耐フラックス形	プラスチック・シール形
否	可 (スプレーフレクサ) 使用時確認要	可

予備加熱

①はんだ付け性を良くするために必ず予備加熱を行ってく

②予備加熱は下記条件で行ってください。

温度	110℃以下
時間	40秒以内


③装置の故障などで長時間高温中に放置されたリレーはご 使用にならないでください。初期の特性が変化する原因 となります。

予備加熱の可否

ケース入り形	耐フラックス形	プラスチック・シール形
否	可	可

工程4

はんだ付け

①品質の均一性からフローソルダ式をおすすめします。

・はんだ温度:約260℃

・はんだ時間:約5秒以内 ・はんだがプリント基板上にあふれないように液面位置 調整をしてください。

自動はんだ付け

自動はんだ付けの可否

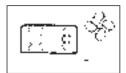
ケース入り形	耐フラックス形	プラスチック・シール形
否	可	可

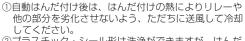
手はんだ付け

①こて先の平滑仕上げをした後、下記条件にてはんだ付け を行ってください。

・はんだごて:30~60W ・こて先温度:350℃ ・はんだ時間:約3秒以内

②なお、右図のように、はんだに 切断面を入れてフラックスの飛 散を防止したものがあります。


手はんだ付けの可否

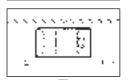

ケース入り形	耐フラックス形	プラスチック・シール形
可	可	可
		_

プリント基板用リレー 共通の注意事項

工程5

冷却

②プラスチック・シール形は洗浄ができますが、はんだ 付け後ただちに洗浄液などの冷たい液に浸漬しないで ください。密封性が損なわれる原因となります。


冷却

耐フラックス形	プラスチック・シール形
要	要

工程6

洗浄

洗浄される場合、洗浄方法と洗浄液の選定には、下表をご参照ください。

①洗浄方法

ケース入り形 耐フラックス形	プラスチック・シール形
ボイリング洗浄または浸漬洗浄は不可です。 プリント基板の裏面だけブラッシング洗浄してください。	ボイリング洗浄または浸漬洗浄が可能です。 ただし、超音波洗浄(超音波洗浄対応品を除く)および、端子カットは行わないでください。 コイル断線や接点のスティッキングを起こす原因となります。 超音波洗浄される場合は、「超音波洗浄対応品」をご使用ください。 洗浄される場合は、アルコール系または水系の洗浄液をご使用ください。 また、洗浄温度は40℃以下にしてください。

②洗浄液可否一覧表

ないでください。


	洗浄液	プラスチック・ シール形
塩素系	・ペルクリーン ・クロロソルダ	可
水性	・インダスコ ・ホリス ・純水(湯)	可
アルコール	・IPA ・エタノール	可
その他	・シンナー ・ガソリン	不可

- 注1. その他の洗浄液を使用される場合は、ご相談ください。 フレオンTMC、シンナー・ガソリンはすべてのリレーに使 用しないでください。
 - 2. 水性またはアルコール系をご使用の場合、リレーと基板 間の洗浄性が劣る原因となります。この対策としてスタン ドオフを高くした仕様をそなえた機種があります。

CFC-113(通称フロン)や1.1.1トリクロロエタンは、世 界的に全廃のための活動が進められています。全廃活動に ご協力をお願いいたします。

コーティング

- ①ケース入り形、耐フラックス形は、コーティング剤がリ レー内部に浸入し接触障害を起こす原因となりますので コーティングしないでください。または、リレーを後付けとしてください。
- ②コーティング剤の種類によっては、リレーのケースを破損させたり、シール剤を化学的に溶解させ、密封破壊の原因となりますので十分確認の上、選択してください。
- ③リレー全体の樹脂固めは、行わないでください。リレー の特性が変化する原因となります。 コーティング剤の温度は、使用周囲温度の最大値を超え

コーティング

種類	構造	プラスチック・シール形
エポキシ系		可
ウレタン系		可
シリコン系		不可
フッ素系		可

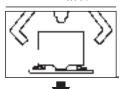
②サーフェス・マウント形

プリント基板への実装については、各々の工程で次の配慮を行い、はんだリフロー条件を設定してください。 なお、リレー個別に実装上の注意が必要な場合がありますので、

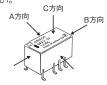
各リレーの"正しい使い方"の欄もご参照ください。

工程1

クリームはんだ印刷

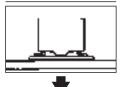


・クリームはんだの選択について、フラックス中に塩素が 多く含有しているものはリレーの端子や基板のパターン を腐食させる原因となりますので塩素含有の少ないまた は、塩素を含有していないロジン系をおすすめします。



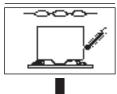
工程2

リレー搭載

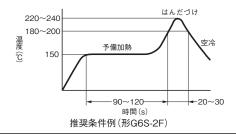

・リレー搭載時のツメの保持力はリレー個々の基準値以下 に設定ください。

	形G6S	形G3VM
A方向	1.96N以下	1.96N以下
B方向	4.9N以下	1.96N以下
C方向	1.96N以下	

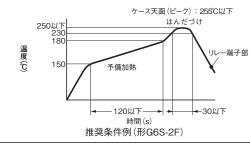
工程3


搬送

・搬送時の振動によりリレーがずれないようにしてくださ い。はんだ付け不良の原因となります。


工程4 はんだリフロ-

IRS法(赤外線リフロー)


実装用はんだ:鉛はんだ時

- ・はんだ付け推奨条件は、プリント基板面の温度プロファ イルを示していますがリレー個々に条件が違う場合があ りますので個別仕様をご確認の上ご使用ください。 (詳細は形式別の "正しくお使いください" をご覧ください。)
- ・はんだづけ後、ただちに洗浄液などの冷たい液に浸漬し ないでください。密封性が損なわれる原因となります。

実装用はんだ:鉛フリーはんだ時

- ・はんだ付け推奨条件は、リレー端子部の温度プロファイ ルを示していますがリレー個々に条件が違う場合があり ますので個別仕様をご確認の上で使用ください。(詳細は形式別の"正しくお使いください"をご覧ください。)
- ・はんだづけ後、ただちに洗浄液などの冷たい液に浸漬し ないでください。密封性が損なわれる原因となります。

(注)リレーをはんだ槽に浸漬しないでください。樹脂変形などによる動作不良の原因となります。

工程5

洗浄

- ・リフローはんだ実装後に洗浄される際は、アルコール系 または水系の洗浄剤をご使用ください。また、洗浄温度 は40℃以下にしてください。
- ・丸洗い洗浄はボイリング洗浄または浸漬洗浄をおすすめ します。ただし、超音波洗浄は行わないでください。 コイル断線や、接点の軽溶着を起こす原因となります
- 注1. その他の洗浄液を使用される場合は、ご相談ください。 フレオンTMC、シンナー・ガソリンはすべてのリレーに 使用しないでください。
- 2. 水系またはアルコール系をご使用の場合、リレーと基板 間の洗浄性が劣る原因となります。この対策としてスタン ドオフを高くした仕様を備えた機種があります。

CFC-113(通称フロン)や1.1.1トリクロロエタンは、 世界的に全廃のための活動が進められています。全廃 活動にご協力をお願いいたします。

・洗浄液可否一覧表

	洗浄液	適用
塩素系	・ペルクリーン ・クロロソルダ	可
水性	・インダスコ ・ホリス ・純水(湯)	可
アルコール	・IPA ・エタノール	可
その他	・シンナー ・ガソリン	不可