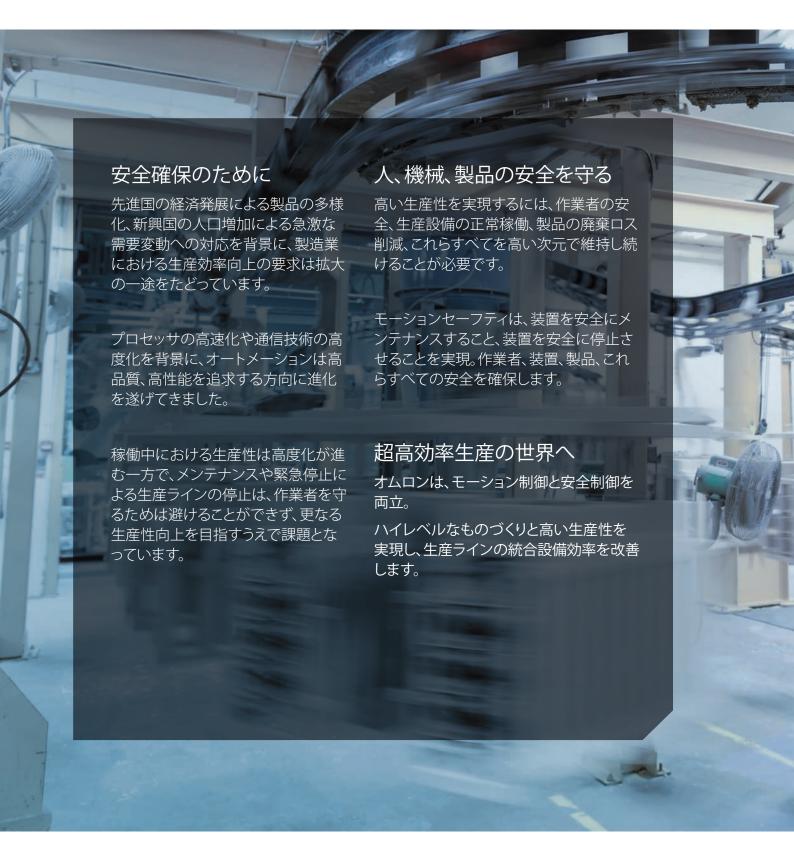


製造現場の 生産性向上と安全性向上を両立



製造現場の生産性向上と 安全性向上を両立

「人」と「機械」と「モノ」に 高度な安全制御

装置を止めずにメンテナンス

予期しない停止の際にも 制御を続けることで、 装置と製品への影響を回避

非常停止時も複数モータの 同期を維持することで、 ロスのない生産を実現

モーションセーフティを簡単に

1Sシリーズにモーションセーフティ機能を搭載

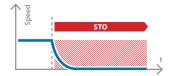
近年、製造業では装置の停止を最小限に抑えて稼働率を上げることで、生産性の向上を図ろうとしています。その実現のた め、安全規格に適合した装置で生産を行い、作業員を危険な状況から守る必要があります。安全機能に対応した1Sシリーズ は、人、機械、そしてモノの高度な安全制御を実現。作業者を危険にさらすリスクを回避しながら、装置の停止時間を削減し、 製品廃棄を最小化することが可能です。1Sシリーズ安全機能対応では、サーボドライバにモーションセーフティ機能を搭載。 配線も簡単になります。モーションセーフティだけでなく、1Sシリーズのコンセプトのもと、さらなる進化を遂げた1Sシリーズ が、モーション制御と安全制御を両立することで、生産性向上に貢献します。

Ether CAT.

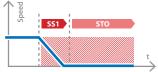
Safety over Ether CAT.

· NXシリーズ セーフティネットワーク コントローラとNX1マシンオートメ ーションコントローラを組み合わせ ることで、EtherCATとFSoEを使用し た最大12軸までの高速安全制御を 実現。

- AC200V、AC400Vをラインナップ
- ・適用モータ容量200W~3kW
- ・20ビットバッテリレスABSエンコーダ搭載
- ・瞬時最大トルク350%を実現(200V、750W以下)
- · Safety over EtherCAT (FSoE) 対応

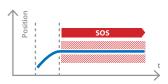


機械安全に適応できる多様なセーフティ機能を搭載

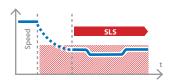

STO、SS1、SS2、SOS、SLS、SLP、SDI、SBC (PLe SIL3) FSoE経由

Safe Torque Off (STO)

モータへの電力供給を遮断してモー タを止める機能。


Safe Stop 1 (SS1)

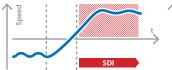
SS1が有効になってから指定した 時間が経過すると、STOによりモー タを安全に止める機能。


Safe Stop 2 (SS2)

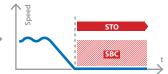
SS2が有効になってから指定した時間 が経過すると、SOSによりモータを安 全に止める機能。

Safe Operating Stop (SOS)

停止位置からのずれが指定した量を 超えないようにする機能。モータへ の電力供給は維持される。


Safely-Limited Speed (SLS)

モータの速度が指定した速度を超え ないようにする機能。


Safely-Limited Position (SLP)

安全位置を監視する機能。値が設 定した監視範囲を超えた場合、ユ ーザに通知し、モータを停止させる (STO状態)。

Safe Direction (SDI)

モータが指定していない方向に回転 することを防ぐ機能。

Safe Brake Control (SBC)

保持ブレーキを安全に制御する機能 で、STOと同時に有効になる。

ケーブル1本で設置が簡単

- ・動力、エンコーダ、ブレーキを1本のIP67コネクタ付きケーブルで対応
- ・脱着式コネクタで配線工数やメンテナンス工数を削減
- ・速く、確実に接続できるスクリューレスプッシュインコネクタを採用

回転コネクタ

統合プログラミングと 統合テストで工数削減

- · 自動I/F変数定義
- ・モーションセーフティファンクションブロック
- · グラフィカルなGUI
- ・統合データトレース

統合プログラミング

統合テスト

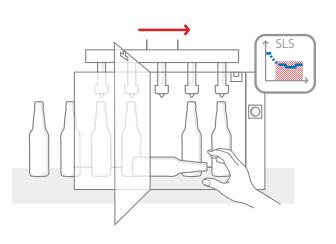
工数削減

バッテリレス ABSエンコーダ From

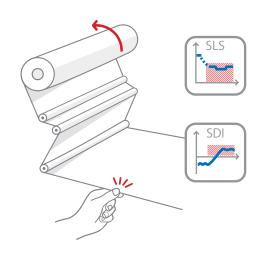
課題

・倒れたワークを取り除く場合などは、装置を止める必要があり生産は止まります。

解決


- · Safely-Limited Speed機能により、装置を安全に動かしながら、異常な状態を解除することができます。
- 安全速度から通常速度へスムーズに復帰できます。

課題


・フィルム交換時、ジョグまたはインチング運転で、作業者が 各ロールにフィルムをセットする必要があるため、段取替 えが複雑になり、時間がかかります。

解決

Safely-Limited Speed機能で、ロールを安全速度で動かしながらフィルムをセットできます。Safe Direction機能で、フィルムの送り方向を監視し、スムーズな段取り替えが実施できます。

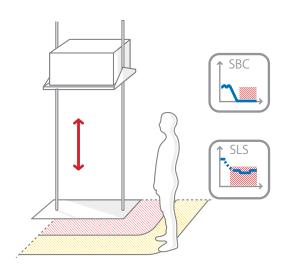
♥ ダウンタイムの最小化

✓ 段取替え時間を削減

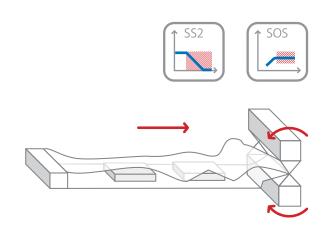
課題

・スタッカークレーン動作中に、作業者が侵入すると、クレーンは止まります。

解決

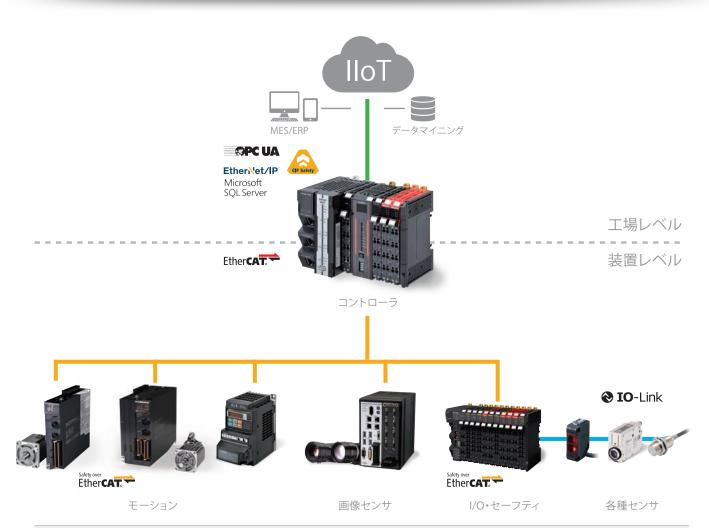

- 作業者が近づくと、Safely-Limited Speed機能により、スタッカークレーンは止まることなく安全速度で動き続けます。
- ・作業者が近づきすぎた場合には、Safe Brake Control機能により、スタッカークレーンを確実に停止させます。

課題


・包装中に非常停止すると、複数モータの同期が解除され、フィルムが詰まります。製品廃棄や、再起動までのロスタイムが発生します。

解決

・包装中に非常停止しても、モータは同期を維持して減速 停止します。フィルムの詰まりを回避します。



✓ 装置を停止させない

✓ 非常停止時の廃棄を削減

Sysmacオートメーションプラットフォーム

Software

統合開発環境 Sysmac Studio

- ・モーション、ロジック、セーフティ、ドライブ、画像センサ、さらにHMIのサポート機 能をひとつのソフトウェアに統合
- ・オープンなプログラムの国際規格であるIEC 61131-3 (およびJIS B 3503) に準拠
- · PLCopen準拠のモーション制御・安全ファンクションブロック
- ・変数に対応した命令語によるラダー言語、ST言語とファンクションブロックプロ グラミングのサポート
- ・複雑なモーション制御を簡単に設定できるカムエディタの搭載
- ・データベース接続ファンクションブロック

Sysmac Library

・マシンオートメーションコントローラ NJ/NXシリーズのプログラムに使用できる ソフトウェア機能部品集。サンプルプログラムとHMI画面サンプルもご用意

当社Webサイトよりダウンロードし、Sysmac Studioにインストールしてご使用ください。 http://www.fa.omron.co.jp/sysmac_library

Sysmac servo family

マシンオートメーションコントローラ

NXシリーズ セーフティネットワークコントローラをNX1マシンオートメーション コントローラに接続すると、EtherNet/IP+CIP SafetyとEtherCAT+FSoEを同時 に使用することができます。

NJ/NXシリーズ

- ・シーケンス制御、モーション制御をひとつのコ ントローラに統合
- ・制御軸数:2~256軸。規模に合わせたCPUユニ ットの選択が可能
- · IEC 61131-3 (およびJIS B 3503) 準拠
- · PLCopen準拠のモーション制御・安全ファンク ションブロック
- ・ロボット制御機能またはデータベース接続機 能搭載機種もラインナップ
- ・EtherCATおよびEtherNet/IPポート標準搭載

サーボ

サーボモータ/ドライバ 1Sシリーズ -安全機能対応サーボシステム

- ・回転型モータ用サーボドライバ
- . モータ容量: 最大3kW
- · バッテリレスABSエンコーダ
- ・高度なセーフティ機能:STO/SS1/SS2/SOS/SLS/ SLP/SDI/SBC
- ・動力、エンコーダ、ブレーキを1本のケーブルで対応

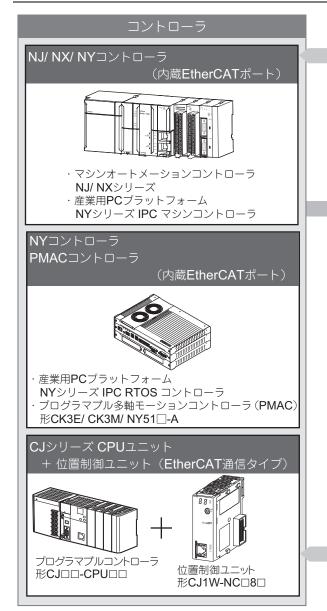
サーボモータ/ドライバ 1Sシリーズ

- 汎用サーボシステム
- ・回転型モータ用サーボドライバ
- . モータ容量:最大15kW
- ・バッテリレスABSエンコーダ
- ・セーフティ機能:R88D-1SN□-ECT :STO R88D-1SN□-ECT-51:STO/SS1/SLS

サーボモータ/ドライバ G5シリーズ

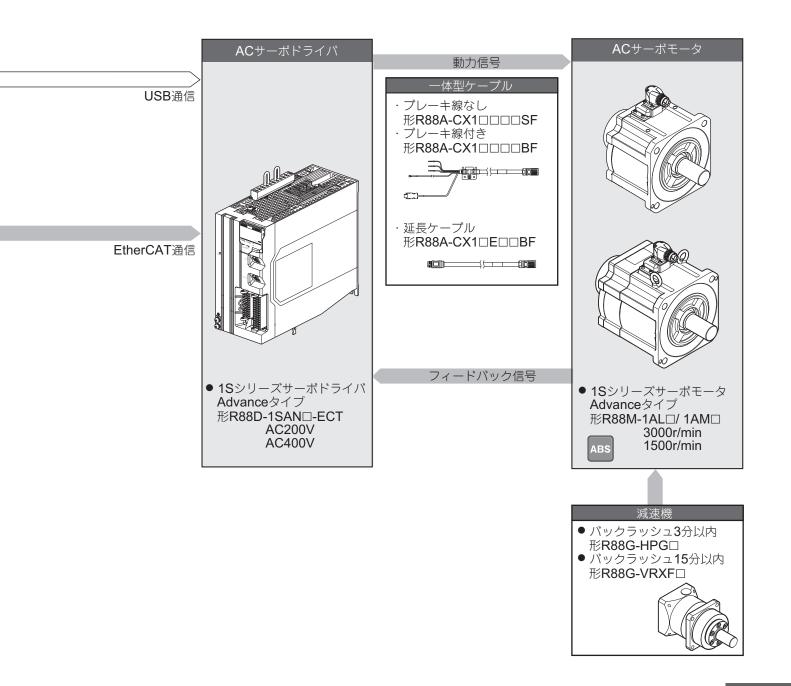
- ・回転型モータ用/リニアモータ用サーボドライバ
- ・回転型モータ容量:最大15kW
- ・リニアモータ:最大推力2100N
- ・セーフティ機能:STO機能(安全入力信号のみ)
- フルクローズ制御

Sysmacは、オムロン株式会社製FA機器製品の日本及びその他の国における商標または登録商標です。
Windows、SQL Serverは、米国Microsoft Corporationの、米国、日本およびその他の国における登録商標または商標です。
EtherCAT® およびSafety over EtherCAT® は登録商標かつ特許取得済みの技術であり、Beckhoff Automation GmbH(ドイツ)の許諾を受けています。
EtherNet/P™、CIP Safety™はODVAの商標です。
その他、記載されている会社名と製品名などにつきましては、各社の登録商標または商標です。
本カタログで使用している製品写真や図にはイメージ画像が含まれており、実物とは異なる場合があります。
スクリーンショットはマイクロソフトの許可を得て使用しています。
Shutterstock.comのライセンス許諾により使用している画像を含みます。


R88M-1A / R88D-1SAN -ECT

より安全な装置、 より効率的な生産が可能に

- 機能安全レベルSIL3/PLeに適合した、8つのセーフティ機能 (STO、SS1、SS2、SOS、SLS、SLP、SDI、SBC)を搭載
- Ether CATネットワークでセーフティを実現
- •動力、エンコーダ、ブレーキのケーブル一本化
- 400V対応で設備機器の効率もアップ
- •剛性が低いメカでも加減速時のゆれを抑制
- EtherCAT通信周期125 µsに対応
- 2自由度制御構造による簡単調整
- バッテリレスABSエンコーダ搭載


システム構成

*CX-One では1SシリーズサーボドライバAdvanceタイプの設定はできません。別途Sysmac Studio をご準備ください。注. PMACはProgrammable Multi Axis Controllerの略称です。

ACサーボドライバEtherCAT通信内蔵タイプ[1Sシリーズ安全機能対応]

88D-1SAN

目次

- •種類/標準価格
- 仕様
- Ether CAT 通信仕様
- セーフティ機能概要
- バージョン情報
- 各部の名称と機能
- 外形寸法

種類/標準価格

ご注文の手引きをご参照ください。

仕様

一般仕様

項目			仕様	
使用周囲温度、使用周囲湿度			0~55℃、90%RH以下(結露がないこと)	
保存周囲温	温度、保存周囲湿度		-20~+65°C、90%RH以下(結露がないこと)	
使用雰囲気	、保存雰囲気		腐食性ガスなどがないこと	
使用高度			標高1000m以下	
耐久振動			10~60Hz、加速度5.88 m/s ² 以下(共振点での連続使用は不可)	
絶縁抵抗			電源端子/動力端子とPE間0.5MΩ以上(DC500V)	
耐電圧			電源端子/動力端子とPE間AC1500V 1分間(50/60Hz)	
保護構造			IP20(IP54の盤内設置)	
	EU指令 および 英国法令	EMC	EN 61800-3 second environment、C3 category (EN 61000-6-7; Functional Safety)	
		低電圧機器	EN61800-5-1	
		機械安全	EN ISO 13849-1、EN61508、EN62061、EN61800-5-2	
V / I I I I I I I	UL規格		UL61800-5-1	
海外規格	CSA規格		CSA C22.2 No.274	
	韓国電波法(KC)		適合	
	オーストラリアラベリング要求(RCM)		適合	
	SEMI規格		瞬停基準に対応可能(無負荷時)	
	船舶規格(NK/LR)		適合しない	

また、サーボドライバの耐電圧試験は絶対に行わないでください。内部素子損傷のおそれがあります。

機械指令の詳細は次のとおりです。

セーフティ入力信号でのSTO機能: EN ISO13849-1(Cat3 PLe)、EN61508、EN62061、EN61800-5-2(SIL3) EtherCAT通信でのセーフティ機能: EN ISO 13849-1 (STO/SS1/SBC: Cat.3 PLe, SS2/SLS/SDI/SOS/SLP: Cat.3 PLe)、EN61508、EN62061、EN61800-5-2

注1. 上記項目は、単独での評価試験によるものです。複合された条件ではこの限りではありません。
2. サーボドライバのメガテスト(絶縁抵抗測定)を実施する場合は、サーボドライバへの接続をすべて切り離して行ってください。接続したままメガテストを実施するとサーボドライバの故障のおそれがあります。

性能仕様

AC200V入力タイプ

サーボドライバ形式(形R88D-)		1SAN02H-ECT	1SAN04H-ECT	1SAN08H-ECT			
項目		200W	400W	750W			
	主回路	電源電圧	単相および三相AC200~240V(170~252V) *1				
	工四四	周波数	50/60Hz(47.5~63Hz) *1				
	制御回路	電源電圧	DC24V(21.6~26.4V)				
入力	例如四路	消費電流 *2	700mA				
	定格電流[Arms]	単相	2.7	4.6	7.3		
	(主回路電源電圧: AC240V時)	三相	1.5	2.7	4.0		
出力	定格電流[Arms]		1.5	2.5	4.6		
щЛ	最大電流[Arms]		5.6	9.1	16.9		
<i>双</i> 劫 隼	全型 全		17.0	25.0	42.0		
光烈生	<u>r</u> [v v]	制御回路	11.9	11.9	14.5		
適用サ	ーボモータ定格出力[W]		200	400	750		
3000r/minモータ (形R88M-) 20BitABS with Batteryless		1AM20030T	1AM40030T	1AM75030T			
瞬断保持時間(主回路電源電圧: AC200V時)			10ms(負荷条件:定格出力時) *4				
SCCR[Arms]			5000				
質量[kg]			2.6	2.6	2.6		

サーボドライバ形式(形R88D-)		1SAN10H-ECT	1SAN15H-ECT	1SAN20H-ECT	1SAN30H-ECT	
項目		1kW	1.5kW	2kW	3kW	
	主回路	電源電圧	三相 AC200 ~ 240V (170~252V) * 1	単相および三相 AC200 ~ 240V (170~252V) * 1	三相AC200~240\	/(170~252V) *1
		周波数	50/60Hz(47.5~63Hz) *1			
入力	制御回路	電源電圧		DC24V(21.6~26.4V)		
	山小村市市	消費電流 *2	700mA		1000mA	
	定格電流[Arms]	単相	_	15.7	_	
	(主回路電源電圧: AC240V時)	三相	5.8	9.0	13.0	15.9
出力	定格電流[Arms]		7.7	9.7	16.2	22.3
最大電流[Arms]			16.9	28.4	41.0	54.7
杂 数.量	全 主		49.0	88.0	140.0	150.0
北州里	<u>.</u> [vv]	制御回路	14.5	22.4	22.4	22.4
適用サ	ーボモータ定格出力[W]	,	1000	1500	2000	3000
3000r/minモータ(形R88M-) 20BitABS with Batteryless		1AL1K030T	1AL1K530T	1AL2K030T	1AL2K630T	
1500r/minモータ (形R88M-) 20BitABS with Batteryless		_	1AM1K515T	_	1AM2K715T	
瞬断保持時間(主回路電源電圧: AC200V時)		10ms(負荷条件:定格出力時) *4				
SCCR[Arms]		5000				
質量[kg]		2.6	4.2	4.2	4.2	

^{*1.}かっこ外の値は定格値、かっこ内の値は許容変動範囲を示します。
*2.消費電流に記載される電流値を考慮して、DC電源を選定してください。
製品の銘板に印字される定格電流値は、1SシリーズのUL/低電圧指令の申請条件であるため、各形式のDC電源選定時に考慮する必要はありません。
*3.適用サーボモータの中で発熱量が最大となる値です。
各適用サーボモータごとの発熱量は14ページの「サーボドライバ、サーボモータと主回路発熱量の関係」を参照してください。
*4.主回路の瞬断保持時間です。瞬断時に制御回路の電源を保持できるように、制御電源には次の条件を満たすDC電源を使用してください。
強化絶縁、または二重絶縁されたもので、出力保持時間が10ms以上のもの

AC400V入力タイプ

AC400V入力タイプのAC400V三相電源は、中性点接地した電源を使用してください。

サーボドライバ形式(形R88D-)		1SAN10F-ECT	1SAN15F-ECT	1SAN20F-ECT	1SAN30F-ECT		
項目		1kW	1.5kW	2kW	3kW		
	主回路	電源電圧	三相 AC380~480V(323~504V) *1				
	土凹岭	周波数	50/60Hz(47.5~63Hz) *1				
	生物同學	電源電圧	DC24V(21.6~26.4V)				
入力	制御回路	消費電流 *2	流 *2 1000mA				
	定格電流[Arms] (主回路電源電圧: AC480V時)	三相	3.1	4.3	6.5	8.4	
出力 最		定格電流 [Arms]	4.1	4.7	7.8	11.3	
		最大電流 [Arms]	9.6	14.1	19.8	28.3	
沙 劫 旱	文 共 目 口 4 7		56.0	81.0	120.0	150.0	
発熱量	[vv]	制御回路	22.4	22.4	22.4	22.4	
適用サ	ーボモータ定格出力[W]		1000	1500	2000	3000	
3000r	/minモータ (形R88M-)	20BitABS with Batteryless	1AL75030C 1AL1K030C	1AL1K530C	1AL2K030C	1AL3K030C	
1500r	/minモータ (形R88M-)	20BitABS with Batteryless	_	1AM1K515C	_	1AM3K015C	
瞬断保持時間(主回路電源電圧: AC400V時)		10ms(負荷条件:定格出力時) *4					
SCCR[Arms]		5000					
質量[kg]		4.2	4.2	4.2	4.2		
• •		l .	1		4.2		

^{*1.}かっこ外の値は定格値、かっこ内の値は許容変動範囲を示します。

サーボドライバ、サーボモータと主回路発熱量の関係

サーボドライバ型式	サーボモータ型式	主回路発熱量(W)
形R88D-1SAN15H-ECT	形R88M-1AL1K530T-□	88
//2H00D-13AN13H-EC1	形R88M-1AM1K515T-□	69
形R88D-1SAN30H-ECT	形R88M-1AL2K630T-□	150
//2HOOD-1SANSUH-ECT	形R88M-1AM2K715T-□	150
形R88D-1SAN10F-ECT	形R88M-1AL75030C-□	55
形的OD-1SANTUF-ECT	形R88M-1AL1K030C-□	56
形R88D-1SAN15F-ECT	形R88M-1AL1K530C-□	81
//2HOOD-13AN13F-EC1	形R88M-1AM1K515C-□	52
形R88D-1SAN30F-ECT	形R88M-1AL3K030C-□	150
//>nood-13AN3UF-ECT	形R88M-1AM3K015C-□	140

^{*2.}消費電流に記載される電流値を考慮して、DC電源を選定してください。 製品の銘板に印字される定格電流値は、1SシリーズサーボドライバAdvanceタイプのUL/低電圧指令の申請条件であるため、各形式のDC電源選定時に考慮す る必要はありません。

る必要はありません。 *3.適用サーボモータの中で発熱量が最大となる値です。 各適用サーボモータごとの発熱量は14 ページの「サーボドライバ、サーボモータと主回路発熱量の関係」を参照してください。 *4.主回路の瞬断保持時間です。瞬断時に制御回路の電源を保持できるように、制御電源には次の条件を満たすDC電源を使用してください。 強化絶縁、または二重絶縁されたもので、出力保持時間が10ms以上のもの

セーフティ機能概要

セーフティ機能説明

機能	内容
セーフトルクオフ	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Safe torque off (STO)	モータ電流を遮断し、モータを停止させる機能です。
セーフストップ1	セーフティコントローラからの指令を受けてから、任意のタイミングでSTO機能を働かせ、
Safe stop 1 (SS1)	モータを停止させる機能です。
セーフストップ2	セーフティコントローラからの指令を受けてから、任意のタイミングでSOS機能を働かせるこ
Safe stop 2 (SS2)	とで、モータの停止を監視する機能です。
セーフオペレーティングストップ	モータが任意の位置に停止していることを監視する機能です。監視は位置と速度の両方で行い、
Safe operating stop (SOS)	モータが停止位置から動作した場合は、監視制限値超過異常にします。
セーフリーリミテッドスピード	セーフティ現在モータ速度を監視する機能です。セーフティ現在モータ速度が設定した監視範
Safely-limited speed (SLS)	囲を超えると、監視制限値超過異常にします。
セーフリーリミテッドポジション	セーフティ現在位置を監視する機能です。セーフティ現在位置が設定した監視範囲を超えると、
Safely-limited position (SLP)	監視制限値超過異常にします。
セーフディレクション	モータの回転方向を監視する機能です。回転禁止方向へモータが回転すると、監視制限値超過
Safe direction (SDI)	異常にします。
セーフブレーキコントロール	保持ブレーキ専用のセーフティ出力機能です。STO、SS1機能とブレーキ動作を連動させるこ
Safe brake control (SBC)	ともできます。

サーボドライバは次の2種類のSTO機能を持ちます。安全機器構成に応じて一方または両方の機能を使用してください。

- ・セーフティ入力信号でのSTO機能
- EtherCAT 通信でのSTO機能

セーフティ入力信号でのSTO機能だけを使用する場合、EtherCATネットワーク関連の設定は不要です。

各セーフティ機能の実現可能な最大の安全レベルは、次の通りです。

機能	実現可能な安全レベル	機能	実現可能な安全レベル
STO	SIL3/PLe	SLS	SIL3/PLe * 1
SS1	SIL3/PLe	SLP	SIL3/PLe * 2
SS2	SIL3/PLe	SDI	SIL3/PLe * 1
SOS	SIL3/PLe * 1	SBC	SIL3/PLe * 3

詳細は、「ACサーボモータ/ドライバ 1Sシリーズ EtherCAT®通信内蔵タイプ 安全機能対応 ユーザーズマニュアル(マニュ アル番号:SBCE-438) | を参照してください。

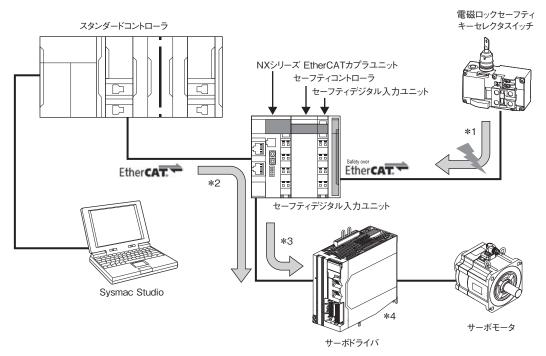
セーフティシステムの構築

装置を安全な状態にするためには、セーフティコントローラ、スタンダードコントローラ、セーフティサーボドライバで連携し た制御を行う必要があります。

それぞれの機器の主な役割は、次のとおりです。

機器	主な役割
セーフティコントローラ	・セーフティ入出力の監視・スタンダードコントローラへセーフティ入出力の状態を通知・サーボドライバへセーフティ機能の実行/中断を指令・サーボドライバへセーフティ機能の異常解除を指令
スタンダードコントローラ	・サーボドライバへサーボON/OFFや異常解除を指令 ・サーボドライバへ位置や速度、トルクを指令
サーボドライバ	・スタンダードコントローラからの指令によりサーボON/OFFや異常を解除 ・スタンダードコントローラからの指令によりモータを制御 ・セーフティコントローラからの指令によりセーフティ機能を実行/中断 ・セーフティコントローラからの指令によりセーフティ機能の異常を解除 ・異常発生時にモータを停止

制御の流れは次のとおりです。


- 1.立ち入り禁止区域に人が入った場合、装置の危険部位を人が触れようとしている場合、装置や製品状態の確認、メンテナン ス、資材補給のために人が装置に近づく場合など、セーフティコントローラはその状態をセーフティセンサやセーフティス イッチで検知します。
- 2.セーフティコントローラは検知した情報をスタンダードコントローラへ通知します。
- 3.スタンダードコントローラはセーフティサーボドライバへ減速や停止の制御を指令します。同時に、セーフティコントローラ はセーフティサーボドライバへ使用するセーフティ機能の実行を指令します。
- 4.セーフティサーボドライバは両コントローラからの指令を実行します。

このようにセーフティコントローラとスタンダードコントローラは、スイッチやセンサ、装置の状態に応じて適切なタイミングでサーボドライバへ指令する必要があり、そのためのプログラムが必要です。両コントローラ間で連携した動作を行うために次の時間を考慮し、それぞれのプログラムを作成する必要があります。考慮せず動作を行うと、STOや監視制限値超過異常(エラー表示No.71.03)が発生します。

- ・セーフティ機能が動作するまでの時間 「セーフティコントローラでセーフティ機能の指令を行うまでの時間+セーフティ機能の実行待ち時間」です。
- ・セーフティ機能の実行待ち時間 セーフティサーボドライバがセーフティ機能の指令を受けてから、STOや監視を開始するまでの時間です。

詳細は、「ACサーボモータ/ドライバ 1Sシリーズ EtherCAT®通信内蔵タイプ 安全機能対応 ユーザーズマニュアル(マニュアル番号: SBCE-438)」を参照してください。

SLS機能を使用する場合を例に制御の流れを説明します。

セーフティシステム構成機器	代表型式
スタンダードコントローラ	形NX701
EtherCATカプラユニット	形NX-ECC201 形NX-ECC202
セーフティコントローラ	形NX-SL3300 形NX-SL3500
セーフティデジタル入力ユニット	形NX-SIH400
電磁ロック・セーフティ・ キーセレクタスイッチ	形A22LK
サーボドライバ	形R88D-1SAN

- *1. セーフティ・キーセレクタスイッチとセーフティコントローラで、メンテナンスなどのためにこれから人が装置に近づくことを検知します。
- *2.スタンダードコントローラではセーフティコントローラの情報を参照し、メンテナンスモードに切り替わったことを確認します。この場合、装置を即座に減速する指令を作成し、サーボドライバに指令を与えます。
- 即座に減速する指令を作成し、サーボドライバに指令を与えます。
 *3. セーファィコントローラではサーボドライバに対し、SLS 有効を指令します。
- す。 *4.サーボドライバではスタンダードコントローラからの指令に従い、モータ の減速制御を行います。またセーフティコントローラからのSLS有効の指 令を受け、SLS機能を動作させます。

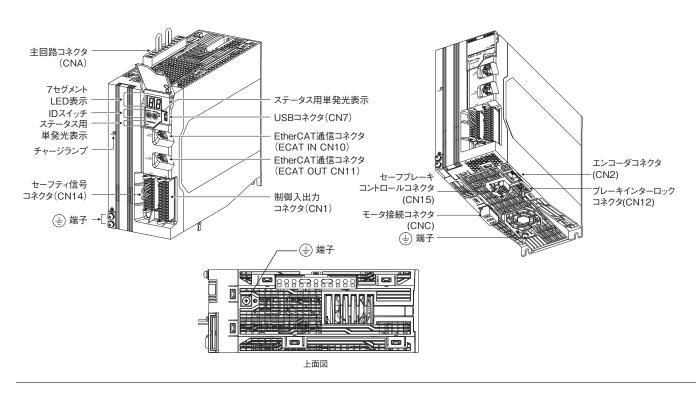
EtherCAT通信仕様

項目	仕様		
通信規格	IEC 61158 Type12、IEC 61800-7 CiA 402 ドライブプロファイル		
物理層	100BASE-TX (IEEE802.3)		
コネクタ	RJ45×2(シールド対応) ECAT IN:EtherCAT入力 ECAT OUT:EtherCAT 出力		
通信媒体	Ethernetカテゴリ5(100BASE-TX)以上のツイストペアケーブル(アルミテープと編組の二重遮へい)を推奨		
通信距離	ノード間距離100m以内		
プロセスデータ	固定PDOマッピング(Fixed PDO mapping) 可変PDOマッピング(Variable PDO mapping)		
メールボックス(CoE)	エマージェンシーメッセージ、SDOリクエスト、SDOレスポンス、SDOインフォメーション		
同期モードと通信周期	DC Mode (Synchronous with Sync0 Event) 通信周期:125μs、250μs、500μs、750μs、1~10ms (0.25ms間隔) Free Run Mode		
LED表示	ECAT-L/A IN(Link/Activity IN) × 1 ECAT-L/A OUT(Link/Activity OUT) × 1 ECAT-RUN × 1 ECAT-ERR × 1		
CiA402ドライブプロファイル	 Cyclic synchronous position mode(サイクリック同期位置モード) Cyclic synchronous velocity mode(サイクリック同期速度モード) Cyclic synchronous torque mode(サイクリック同期トルクモード) Profile position mode(プロファイル位置モード) Profile velocity mode(プロファイル速度モード) Homing mode(原点復帰モード) Touch probe function(ラッチ機能) Torque limit function(トルク制限機能) 		

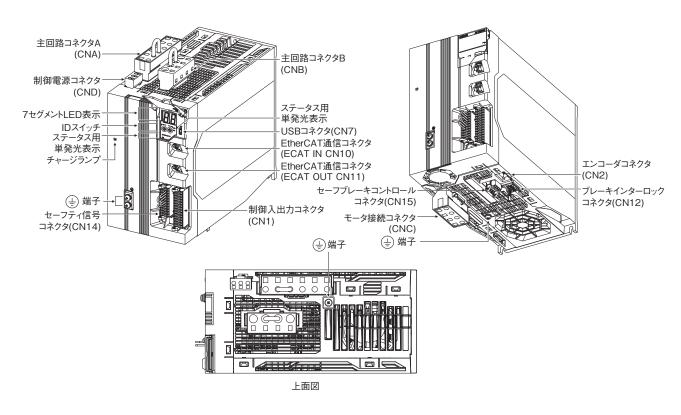
バージョン情報

1Sシリーズサーボドライバ通信内蔵AdvanceタイプのユニットバージョンとSysmac Studioの対応バージョンを以下に示 します。

ユニットバージョン	Sysmac Studioの対応バー ジョン
Ver.1.0 *	Ver.1.44.1以降

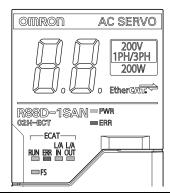

*Ver.1.44以降のSysmac Studioを使用することで、ケーブル冗長化機能を使用してリングトポロジを構成することができます。

17


各部の名称と機能

サーボドライバ各部の名称

形R88D-1SAN02H-ECT/-1SAN04H-ECT/-1SAN08H-ECT/-1SAN10H-ECT


形R88D-1SAN15H-ECT/-1SAN20H-ECT/-1SAN30H-ECT/-1SAN10F-ECT/ -1SAN15F-ECT/-1SAN20F-ECT/-1SAN30F-ECT

ドライバ各部の機能

●ステータス用単発光表示

次の7つのインジケータを搭載しています。

名称	色	説明	
PWR	緑	制御電源の状態を表示します。	
ERR	赤	サーボドライバの異常状態を表示します。	
ECAT-RUN	緑	EtherCATの通信状態を表示します。	
ECAT-ERR 赤		EUIBICAT VD通信从忠を表示します。	
ECAT-L/A IN、ECAT-L/A OUT	緑	EtherCAT物理層のリンクにより点灯または点滅します。	
FS	赤/緑	セーフティ通信状態を表示します。	

●フセグメントLED表示

2桁の7セグメントLEDにより、エラー表示No.、サーボドライバの状態などを表示します。

●IDスイッチ

O~F(16進)のロータリスイッチ2個を使用し、EtherCATのノードアドレスを設定します。

●チャージランプ

主回路電源回路に電荷がチャージされている場合に点灯します。

●制御入出力コネクタ(CN1)

指令入力信号や出力信号を外部機器と接続するためのコネクタです。

●エンコーダコネクタ(CN2)

サーボモータに搭載されているエンコーダとの接続コネクタです。

●EtherCAT通信コネクタ(ECAT IN CN10、ECAT OUT CN11)

EtherCAT通信を行うコネクタです。

●USBコネクタ(CN7)

パソコンとシリアル通信を行うUSB-Micro Bコネクタです。USB2.0のFull Speed(12Mbps)で接続できます。

●ブレーキインターロックコネクタ(CN12)

ブレーキインターロック信号に使用するコネクタです。

●主回路コネクタ(CNA)

主回路電源入力、制御電源入力、外部回生抵抗、DCリアクトルを接続します。

対象機種:形R88D-1SAN02H-ECT/-1SAN04H-ECT/-1SAN08H-ECT/-1SAN10H-ECT

●主回路コネクタA(CNA)

主回路電源入力、外部回生抵抗を接続します。

対象機種:形R88D-1SAN15H-ECT/-1SAN20H-ECT/-1SAN30H-ECT/-1SAN10F-ECT/-1SAN15F-ECT/ -1SAN20F-ECT/ -1SAN30F-ECT

●主回路コネクタB(CNB)

DCリアクトルを接続します。

対象機種:形R88D-1SAN15H-ECT/-1SAN20H-ECT/-1SAN30H-ECT/-1SAN10F-ECT/-1SAN15F-ECT/-1SAN20F-ECT/-1SAN30

●制御電源コネクタ(CND)

制御電源入力を接続します。

対象機種:形R88D-1SAN15H-ECT/-1SAN20H-ECT/-1SAN30H-ECT/-1SAN10F-ECT/-1SAN15F-ECT/-1SAN20F-ECT/-1SAN30

●モータ接続コネクタ(CNC)

モータU、V、W 相の動力線を接続します。

形式によりコネクタが異なります。

●セーフティ信号コネクタ(CN14)

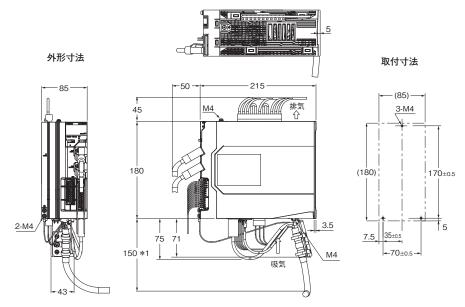
セーフティ機器を接続するためのコネクタです。製品出荷時は、セーフティ信号に短絡線を取り付けた状態です。

● セーフブレーキコントロールコネクタ(CN15)

セーフブレーキコントロールで制御するブレーキと接続するためのコネクタです。

●씧端子

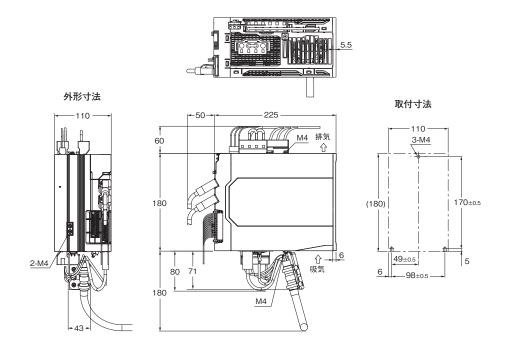
サーボドライバの④端子数と接続先は、次のとおりです。


サーボドライバ形式	④端子数	接続先
T/DOOD AGANGOU FOT A GANG WA FOT A	上部1個	 主回路電源ケーブルのPE線を接続します。
形R88D-1SAN02H-ECT/-1SAN04H-ECT/ -1SAN08H-ECT/-1SAN10H-ECT	前面2個	制御盤内のFG線、一体型ケーブルのFG線およびシールドクラ
TOANGOTTEOT/ TOANTOTTEOT	下部1個	一ンプを接続します。
形R88D-1SAN15H-ECT/-1SAN20H-ECT/	上部1個	
-1SAN30H-ECT/-1SAN10F-ECT/ -1SAN15F-FCT/-1SAN20F-FCT/	前面2個	主回路電源ケーブルのPE線を接続します。 制御盤内のFG線、シールドクランプを接続します。
-1SAN15F-ECT/-TSAN20F-ECT/ -1SAN30F-ECT	下部1個	市川岬盗ヒアリンノFUネホ泳、ノールドノノンノを接続しまり。

【CADデータ】マークの商品は、2次元CAD図面・3次元CADモデルのデータをご用意しています。 CADデータは、www.fa.omron.co.jp からダウンロードができます。

(単位:mm)

単相および三相AC200V用 形R88D-1SAN02H-ECT/-1SAN04H-ECT/-1SAN08H-ECT(200~750W) 三相AC200V用 形R88D-1SAN10H-ECT(1kW)


*1.形 R88D-1SAN10H-ECTの場合、180です。

単相および三相AC200V用 形R88D-1SAN15H-ECT(1.5kW)

三相AC200V用 形R88D-1SAN20H-ECT/-1SAN30H-ECT(2~3kW)

三相AC400V用 形R88D-1SAN10F-ECT/-1SAN15F-ECT/-1SAN20F-ECT/-1SAN30F-ECT(1~3kW)

CADデータ

.ACサーボモータ [1Sシリーズ安全機能対応]

目次

- •種類/標準価格
- 仕様
- 各部の名称と機能
- 外形寸法

種類/標準価格

ご注文の手引きをご参照ください。

仕様

一般仕様

	項目		仕様		
使用周囲温度、使用周囲湿度			0~40℃ 20~90%RH(結露がないこと)		
保存周囲温原	度、保存周囲:	湿度	-20~+65℃ 20~90%RH(結露がないこと)		
使用雰囲気、	保存雰囲気		腐食性ガスなどがないこと		
耐久振動 *			加速度49m/s² モータ停止時は 24.5m/s²以下X、Y、Z方向		
耐衝擊			加速度98m/s ² 以下 X、Y、Z方向3回		
絶縁抵抗			動力端子とFG間10MΩ以上(DC500Vメガ)		
耐電圧			動力端子とFG間AC1500V 1分間(電圧200V) 動力端子とFG間AC1800V 1分間(電圧400V) ブレーキ端子とFG間AC1000V 1分間		
絶縁階級			F種		
保護構造			IP67(軸貫通部、コネクタの接続ピン部は除く)		
EU指令 および 低電圧機器 海外規格 英国法令		低電圧機器	EN60034-1/-5		
	UL規格		UL1004-1/-6		
	CSA規格		CSA C22.2 No.100(cURによる)		

エンコーダ仕様

項目	仕様
エンコーダ方式	光学式バッテリレスアブソリュートエンコーダ
一回転分解能	20ビット
多回転量保持	12ビット
出力信号	シリアル通信
出力インタフェース	RS485準拠

⁻ 注. 絶対値エンコーダをインクリメンタルエンコーダとして使用することも可能です。詳細は、「ACサーボモータ/ドライバ 1Sシリーズ EtherCAT[®]通信内蔵タイプ 安全機能対応 ユーザーズマニュアル(マニュアル番号: SBCE-438)」を参照してください。

^{*}機械共振により振幅が増大される場合がありますので、仕様値の80%までを目安にしてください。注1. ケーブルが、油、水に浸かった状態で使用しないでください。
2. ケーブルの口出し部分や接続部分に、屈曲や自重によるストレスが加わらないように注意してください。

性能仕様

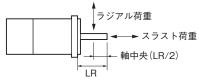
3000r/minモータ

形式		t(形R88M-)		AC200V		
	項目	1	単位	1AM20030T	1AM40030T	1AM75030T
定格出力	定格出力 *1 *2		W	200	400	750
定格トルク	*1 *2		N·m	0.637	1.27	2.39
定格回転数	汝 *1 *2		r/min		3000	
最大回転数	数		r/min		6000	
瞬時最大I	トルク *1*3	3	N·m	2.2 *4	4.5 *4	8.4 *4
定格電流	*1 *2		A(rms)	1.5	2.5	4.6
瞬時最大電	電流 *1		A(rms)	5.6	9.1	16.9
ロータイプ	F 3. L	ブレーキなし	×10 ⁻⁴ kg·m ²	0.224	0.446	1.825
מרציות	, — J v	ブレーキ付き	$\times 10^{-4} \text{kg} \cdot \text{m}^2$	0.284	0.506	2.075
適用負荷へ	イナーシャ		$\times 10^{-4} \text{kg} \cdot \text{m}^2$	4.80	8.40	19.4
トルク定数	效 *1		N·m/A(rms)	0.48	0.56	0.59
パワーレー	- ト * 1 * 5		kW/s	18.1	36.2	31.3
機械的時況	定数 *5		ms	0.79	0.58	0.66
電気的時況	定数		ms	2.4	2.6	3.3
許容ラジブ	アル荷重 *6		N	245	245	490
許容スラス	スト荷重 *6		N	88	88	196
質量	ブレ-	ーキなし	kg	1.3	1.8	3.2
共里	ブレ-	- キ付き	kg	1.7	2.2	4.1
放熱板寸法	法(材質)		mm	250×250×t6(アルミ)		
	励磁電圧 *	8	V		DC24±10%	
	消費電流(20	0℃時)	Α	0.32	0.32	0.37
	静摩擦トルク	ל	N·m	1.37以上	1.37以上	2.55以上
	吸引時間		ms	30以下	30以下	40以下
	釈放時間 *	9	ms	20以下	20以下	35以下
ブレーキ	バックラッシ	シュ	0	1.2以下	1.2以下	1.0以下
仕様 *7	許容制動仕事	量	J	60	60	250
	許容総仕事	里	J	60000	60000	250000
	許容角加速原	度	rad/s ²		10000以下	
	ブレーキ寿命	命(加減速)	_		1000万回以上	
	ブレーキ寿命	命(ON/OFF)、B10d	_		100万回以上	
	絶縁階級		_		F種	

オイルシール付きは摩擦トルクの増加のため、以下の減定格とします。

形式(項目	(形R88M-) 単位	1AM20030T-0/-0S2/-B0/ -B0S2	1AM40030T-0/-0S2/-B0/ -B0S2	1AM75030T-0/-0S2/-B0/ -B0S2
減定格率	%	95	80	90
定格出力	W	190	320	675
定格電流	A (rms)	1.5	2.1	4.2

		形式	t(形R88M-)	AC200V				
	項	目	単位	1AL1K030T	1AL1K530T	1AL2K030T	1AL2K630T	
定格出力	*1 *2		W	1000	1500	2000	2600	
定格トルク	ケ *1 *2		N·m	3.18	4.77	6.37	8.28	
定格回転数	数 *1 *2		r/min		300	0		
最大回転数	汝		r/min		500	0		
瞬時最大	トルク *1*:	3	N·m	9.55	14.3	19.1	24.8	
定格電流	*1 *2		A(rms)	5.2	8.8	12.5	14.8	
瞬時最大電	電流 *1		A(rms)	16.9	28.4	41.0	47.3	
п <i>р</i> ./-	L 2. j.	ブレーキなし	×10 ⁻⁴ kg·m ²	2.105	2.105	2.405	6.813	
ロータイプ	, ーシャ 	ブレーキ付き	×10 ⁻⁴ kg·m ²	2.555	2.555	2.855	7.313	
適用負荷イナーシャ		$\times 10^{-4} \text{kg} \cdot \text{m}^2$	35.3	47.6	60.2	118		
トルク定数 *1		N·m/A(rms)	0.67	0.58	0.56	0.62		
パワーレート *1 *5		kW/s	48	108	169	101		
機械的時定数 *5		ms	0.58	0.58	0.50	0.47		
電気的時定数		ms	5.9	6.1	6.4	11		
許容ラジス	アル荷重 *6		N	490				
許容スラス	スト荷重 *6		N	196				
質量	ブリ	ノーキなし	kg	5.8	5.8	6.5	11.5	
只里	ブレ	ノーキ付き	kg	7.5	7.5	8.2	13.5	
放熱板寸流	去(材質)		mm	400×400×t20(アルミ) 470×470×t20(アルミ)				
	励磁電圧 *	8	V	DC24±10%				
	消費電流(2	0℃時)	Α	0.70	0.70	0.70	0.66	
	静摩擦トル	ク	N·m	9.3以上	9.3以上	9.3以上	12以上	
	吸引時間		ms	100以下	100以下	100以下	100以下	
	釈放時間 *	9	ms	30以下	30以下	30以下	30以下	
	バックラッ	シュ	0	1.0以下	1.0以下	1.0以下	0.8以下	
仕様 *7	許容制動仕	事量	J	500	500	500	1000	
	許容総仕事	量	J	900000	900000	900000	3000000	
	許容角加速	度	rad/s ²		10000.	以下		
	ブレーキ寿·	命(加減速)	_		1000万回	回以上		
	ブレーキ寿·	命(ON/OFF)、B10d	_	·	100万回	以上		
	絶縁階級		_		F種			

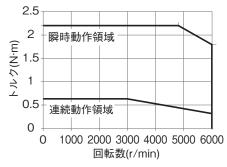

注1. 上記の表で記載されている形式について、オイルシール付きによる減定格はありません。

		形式(形R88M-)			AC400V			
	項	▮	単位	1AL75030C	1AL1K030C	1AL1K530C		
定格出力	*1 *2		W	750	1000	1500		
定格トルク *1 *2		N·m	2.39	3.18	4.77			
定格回転数	数 *1 *2		r/min		3000			
最大回転数	数		r/min		5000			
瞬時最大	トルク *1*	3	N·m	7.16	9.55	14.3		
定格電流	*1 *2		A(rms)	3.0	3.0	4.5		
瞬時最大電	電流 *1		A(rms)	9.6	9.6	14.1		
п <i>р</i> / -	L 2. v.	ブレーキなし	×10 ⁻⁴ kg·m ²	1.305	2.105	2.105		
ロータイ	ノーシャ	ブレーキ付き	×10 ⁻⁴ kg·m ²	1.755	2.555	2.555		
適用負荷	イナーシャ		×10 ⁻⁴ kg·m ²	38.6	35.3	47.6		
トルク定数	数 *1		N·m/A(rms)	0.91	1.17	1.17		
パワーレート *1 *5		kW/s	44	48	108			
機械的時定数 *5		ms	1.1	0.58	0.58			
電気的時定数		ms	4.3	5.9	5.9			
許容ラジアル荷重 *6 N		Ν	490					
許容スラス	スト荷重 *6		Ν	196				
質量	ブリ	ノーキなし	kg	4.2	5.8	5.8		
貝里	ブリ	ノーキ付き	kg	5.9	7.5	7.5		
放熱板寸流	去(材質)		mm	305×305×t20(アルミ) 400×400×t20(アルミ)		(t20(アルミ)		
	励磁電圧 *	8	V	DC24±10%				
	消費電流(2	0℃時)	Α	0.70	0.70	0.70		
	静摩擦トル	ク	N·m	9.3以上	9.3以上	9.3以上		
	吸引時間		ms	100以下	100以下	100以下		
	釈放時間 *	9	ms	30以下	30以下	30以下		
ブレーキ	バックラッ	シュ	0	1.0以下	1.0以下	1.0以下		
仕様 *7	許容制動仕	事量	J	500	500	500		
	許容総仕事	量	J	900000	900000	900000		
	許容角加速	度	rad/s ²		10000以下			
	ブレーキ寿	命(加減速)	_		1000万回以上			
	ブレーキ寿	命(ON/OFF)、B10d	_		100万回以上			
	絶縁階級		_		F種			

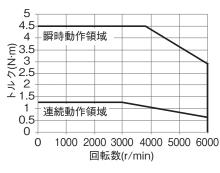
注1. 上記の表で記載されている形式について、オイルシール付きによる減定格はありません。

	形式	t(形R88M-)	AC4	.00V	
	項目	単位	1AL2K030C	1AL3K030C	
定格出力	*1 *2	W	2000	3000	
定格トルク	7 *1 *2	N·m	6.37	9.55	
定格回転数	牧 *1 *2	r/min	30	00	
最大回転数	文 文	r/min	50	00	
瞬時最大	トルク *1*3	N·m	19.1	28.7	
定格電流	*1 *2	A(rms)	6.3	8.7	
瞬時最大電	電流 *1	A(rms)	19.8	27.7	
ロータイプ	ブレーキなし	×10 ⁻⁴ kg·m ²	2.405	6.813	
ערעים	ブレーキ付き	$\times 10^{-4} \text{kg} \cdot \text{m}^2$	2.855	7.313	
適用負荷~	イナーシャ	$\times 10^{-4} \text{kg} \cdot \text{m}^2$	60.2	118	
トルク定数	牧 *1	N·m/A(rms)	1.15	1.23	
パワーレー	-ト *1 *5	kW/s	169	134	
機械的時況	它数 *5	ms	0.52	0.49	
電気的時況	它数	ms	6.3	11	
許容ラジブ	アル荷重 *6	N	490		
許容スラス	スト荷重 *6	N	19	96	
質量	ブレーキなし	kg	6.5	11.5	
只里	ブレーキ付き	kg	8.2	13.5	
放熱板寸流	去(材質)	mm	470×470×	t20(アルミ)	
	励磁電圧 *8	V	DC24	±10%	
	消費電流(20℃時)	Α	0.70	0.66	
	静摩擦トルク	N·m	9.3以上	12以上	
	吸引時間	ms	100以下	100以下	
	釈放時間 *9	ms	30以下	30以下	
- '	バックラッシュ	0	1.0以下	0.8以下	
仕様 *7	許容制動仕事量	J	500	1000	
	許容総仕事量	J	900000	300000	
	許容角加速度	rad/s ²	10000以下		
	ブレーキ寿命(加減速)	_	1000万	回以上	
	ブレーキ寿命(ON/OFF)、B10d	_	100万	回以上	
	絶縁階級	_	F種		

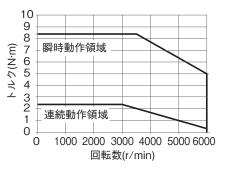
- *1.サーボドライバと組み合わせ、常温(20℃、65%)での値であり、代表値です。
 *2.定格はモータを規定の放熱板に水平取り付けした場合における、周囲温度40℃での連続運転許容値です。
 *3.一部の機種を除き、瞬時最大トルクは定格トルクの約300%です。
 *4.瞬時最大トルクは定格トルクの約350%であり、瞬時最大トルクを出力時の過負荷保護機能の検出時間は短くなっています。詳細は、「ACサーボモータ/ドライバ 1Sシリーズ EtherCAT®通信内蔵タイプ 安全機能対応 ユーザーズマニュアル(マニュアル番号:SBCE-438)」の「電子サーマル機能」を参照してご使用 ください。
- *5. オプションなし形式での値です。 *6. 許容ラジアル荷重およびスラスト荷重は、常温使用時で寿命20000時間を目安に決められた値です。 許容ラジアル荷重は、下図の位置での値を示します。

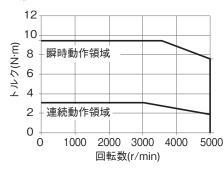

- *7.垂直軸で使用する場合は、「AC サーボモータ/ドライバ 1S シリーズ EtherCAT® 通信内蔵タイプ安全機能対応ユーザーズマニュアル(マニュアル番号: SBCE-438)」を参照して、必ずブレーキインターロック出力(4610Hex)に適切な値を設定してください。
 *8. ブレーキは無励磁作動型です。励磁電圧を加えたとき解除されます。

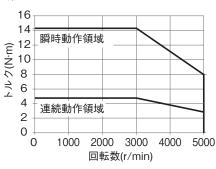
- **O.フレーマは無動域に到生しり。動域電圧を加えたこと肝臓されるり。 **9.動作時間は参考値です。 注1. 上記の表で記載されている形式について、オイルシール付きによる滅定格はありません。

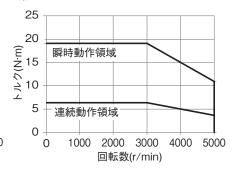

3000r/minモータ(AC200V) トルクー回転数特性

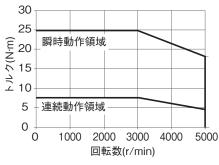
このグラフは、標準ケーブル3m、三相AC200Vまたは単相AC220V入力時の特性を示します。


・形R88M-1AM20030T


・形R88M-1AM40030T

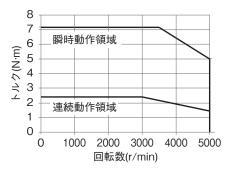

・形R88M-1AM75030T


·形R88M-1AL1K030T

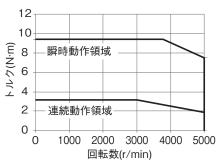

・形R88M-1AL1K530T

·形R88M-1AL2K030T

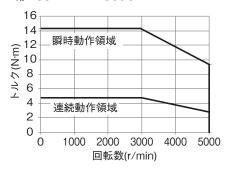
·形R88M-1AL2K630T

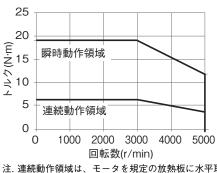


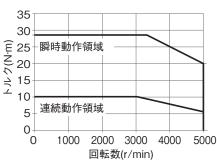
注. 連続動作領域は、モータを規定の放熱板に水平取り付けした場合における、周囲温度40℃での連続運転が可能な動作領域です。 最大回転数での連続運転も可能です。ただし、出力トルクが低下するので注意してください。


3000r/minモータ(AC400V) トルクー回転数特性

このグラフは、標準ケーブル3m、三相AC400V入力時の特性を示します。


・形R88M-1AL75030C


・形R88M-1AL1K030C

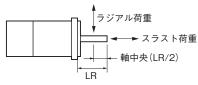

・形R88M-1AL1K530C

・形R88M-1AL2K030C

・形R88M-1AL3K030C

注. 連続動作領域は、モータを規定の放熱板に水平取り付けした場合における、周囲温度40℃での連続運転が可能な動作領域です。 最大回転数での連続運転も可能です。ただし、出力トルクが低下するので注意してください。

1500r/minモータ


		形式(形R88M-)	AC	200V	
	項目	単位	1AM1K515T	1AM2K715T	
定格出力	*1 *2	W	1500	2700	
定格トルク	7 *1 *2	N·m	9.55	17.2	
定格回転数	数 *1 *2	r/min	1	500	
最大回転数	数	r/min	3	000	
瞬時最大 l	トルク *1	N·m	28.7	51.6	
定格電流	*1 *2	A(rms)	8.6	14.6	
瞬時最大電	電流 *1	A(rms)	28.4	49.3	
ロータイナーシャ ブレーキなし		なし ×10 ⁻⁴ kg·m ²	12.413	40.013	
ローダイブ	ブレーキイ	付き ×10 ⁻⁴ kg·m ²	13.013	45.113	
適用負荷へ	イナーシャ	×10 ⁻⁴ kg·m ²	127.05	270.63	
トルク定数	数 *1	N·m/A(rms)	1.11	1.29	
パワーレー	- ト * 1 * 3	kW/s	73	74	
機械的時況	官数 *3	ms	0.75	1.0	
電気的時況	官数	ms	17	19	
許容ラジブ	アル荷重 *4	N	490	1176	
許容スラス	スト荷重 *4	N	196	490	
ブレーキなし		kg	11	18	
貝里	ブレーキ付き	kg	13	22	
放熱板寸法	法(材質)	mm	470×470	×t20(アルミ)	
	励磁電圧 *6	V	DC2	4±10%	
	消費電流(20℃時)	A	0.66	1.20	
	静摩擦トルク	N·m	12以上	22以上	
	吸引時間	ms	100以下	120以下	
	釈放時間 *7	ms	30以下	50以下	
ブレーキ	バックラッシュ	0	0.6以下	0.8以下	
仕様 *5	許容制動仕事量	J	1000	1400	
	許容総仕事量	J	3000000	4600000	
	許容角加速度	rad/s ²	10000以下		
	ブレーキ寿命(加減速)	_	1000万回以上		
	ブレーキ寿命(ON/OF	F)、B10d —	1007	5回以上	
	絶縁階級	_	F種		

2D·3D CADデータ/マニュアル/最新の商品情報は → www.fa.omron.co.jp

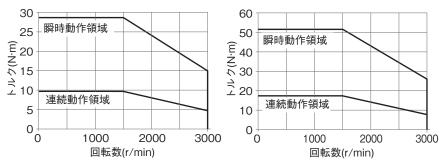
29

		形式(形R88M-)	AC4	.00V	
	項目	単位	1AM1K515C	1AM3K015C	
定格出力	*1 *2	W	1500	3000	
定格トルク	7 *1 *2	N·m	9.55	19.1	
定格回転数	牧 *1 *2	r/min	15	00	
最大回転数	· 数	r/min	30	00	
瞬時最大	トルク *1	N·m	28.7	57.3	
定格電流	*1 *2	A(rms)	4.4	8.5	
瞬時最大電	電流 *1	A(rms)	14.1	28.3	
ロータイプ	ブレーキなし	×10 ⁻⁴ kg·m ²	12.413	40.013	
ローダイン	ブレーキ付き	×10 ⁻⁴ kg·m ²	13.013	45.113	
適用負荷~	イナーシャ	×10 ⁻⁴ kg·m ²	127.05	270.63	
トルク定数	效 *1	N·m/A(rms)	2.21	2.46	
パワーレー	- \ *1 *3	kW/s	73	91	
機械的時況	定数 *3	ms	0.75	1.2	
電気的時況	它数	ms	17	16	
許容ラジブ	アル荷重 *4	N	490	1176	
許容スラス	スト荷重 *4	N	196	490	
質量	ブレーキなし	kg	11	18	
貝里	ブレーキ付き	kg	13	22	
放熱板寸流	去(材質)	mm	470×470×t20(アルミ)		
	励磁電圧 *6	V	DC24	±10%	
	消費電流(20℃時)	Α	0.66	1.20	
	静摩擦トルク	N·m	12以上	22以上	
	吸引時間	ms	100以下	120以下	
	釈放時間 *7	ms	30以下	50以下	
ブレーキ	バックラッシュ	0	0.6以下	0.8以下	
仕様 *5	許容制動仕事量	J	1000	1400	
	許容総仕事量	J	3000000	4600000	
	許容角加速度	rad/s ²	1000	0以下	
	ブレーキ寿命(加減速)	_	1000万	可以上	
	ブレーキ寿命(ON/OFF)、B10d	_	100万	回以上	
	絶縁階級	_	F	種	

^{*3.}オブションなし形式での値です。 *4.許容ラジアル荷重およびスラスト荷重は、常温使用時で寿命20000時間を目安に決められた値です。 許容ラジアル荷重は、下図の位置での値を示します。

^{*5.}垂直軸で使用する場合は、「AC サーボモータ/ドライバ 1S シリーズ EtherCAT® 通信内蔵タイプ安全機能対応ユーザーズマニュアル(マニュアル番号: SBCE-438)」を参照して、必ずブレーキインターロック出力(4610Hex)に適切な値を設定してください。
*6.ブレーキは無励磁作動型です。励磁電圧を加えたとき解除されます。
*7.動作時間は参考値です。

^{*1.}サーボドライバと組み合わせ、常温(20℃、65%)での値であり、代表値です。 *2.定格はモータを規定の放熱板に水平取り付けした場合における、周囲温度40℃での連続運転許容値です。

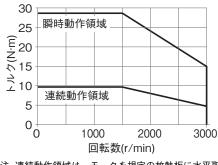

注1. 上記の表で記載されている形式について、オイルシール付きによる減定格はありません。

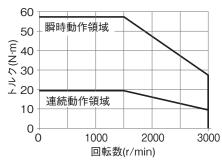
1500r/minモータ(AC200V) トルクー回転数特性

このグラフは、標準ケーブル3m、三相AC200Vまたは単相AC220V入力時の特性を示します。

・形R88M-1AM1K515T

・形R88M-1AM2K715T

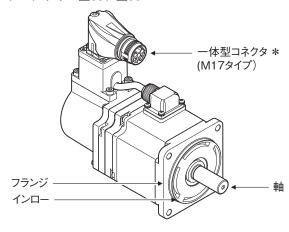

注.連続動作領域は、モータを規定の放熱板に水平取り付けした場合における、周囲温度40℃での連続運転が可能な動作領域です。 最大回転数での連続運転も可能です。ただし、出力トルクが低下するので注意してください。


1500r/minモータ(AC400V) トルクー回転数特性

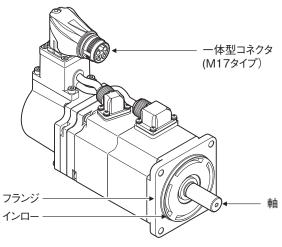
このグラフは、標準ケーブル3m、三相400V入力時の特性を示します。

・形R88M-1AM1K515C

· 形R88M-1AM3K015C

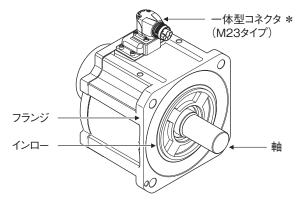


注.連続動作領域は、モータを規定の放熱板に水平取り付けした場合における、周囲温度40℃での連続運転が可能な動作領域です。 最大回転数での連続運転も可能です。ただし、出力トルクが低下するので注意してください。

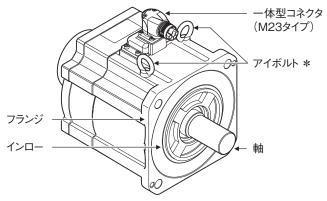

各部の名称と機能

サーボモータ各部の名称

フランジサイズ□60、□80



* ブレーキなしモータの場合、ブレーキ線信号は未使用(端末オープン) AC200V 200Wモータ(ブレーキなし)



AC200V 200Wモータ(ブレーキ付き)

フランジサイズ□100、□130、□180

* ブレーキなしモータの場合、ブレーキ線信号は未使用(端末オープン) AC400V 3kWモータ(ブレーキなし)

* モータの質量によってアイボルトがないものもあります。 AC400V 3kWモータ(ブレーキ付き)

サーボモータ各部の機能

負荷を取り付けるための軸です。軸方向をスラスト方向、軸に対して垂直な方向をラジアル方向と呼びます。

●フランジ

サーボモータを装置に組み付けるための部位です。インロー部分を装置にはめ、取り付け穴でねじを締め固定します。

●一体型コネクタ

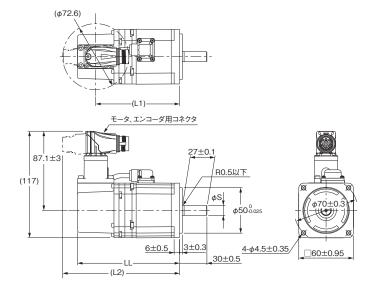
動力線、エンコーダ線、ブレーキ線をまとめて接続できる一体型のコネクタです。動力線は、サーボモータのUVW相に電力を 供給します。エンコーダ線は、サーボモータのエンコーダへの電源供給、およびドライバとの通信を行います。ブレーキ線は、 ブレーキコイルに電源を供給します。

ケーブルの引き出し方向を変更することができます。引き出し方向の変更は最大5回です。

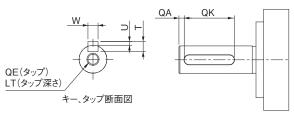
●アイボルト

輪にワイヤロープなどを通して吊り上げ、モータを移動する場合に使用します。

【CADデータ】マークの商品は、2次元CAD図面・3次元CADモデルのデータをご用意しています。 CADデータは、www.fa.omron.co.jp からダウンロードができます。


(単位:mm)

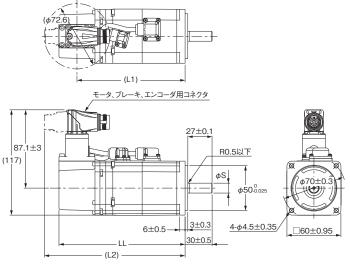
3000r/minモータ(200V)


●200W、400W(ブレーキなし)

形R88M-1AM20030T(-O/-S2/-OS2)、形R88M-1AM40030T(-O/-S2/-OS2)

キー、	タップ付き軸端仕様

形式	寸法(mm)					
11/200	S	LL	L1	L2		
形R88M- 1AM20030T(-S2)	φ11 _{-0.011}	112±1	92	128		
形R88M- 1AM40030T(-S2)	φ14 _{-0.011}	138±1	118	154		
形R88M- 1AM20030T-0(S2)	φ11 _{-0.011}	119±1	99	135		
形R88M- 1AM40030T-0(S2)	φ14-0.011	145±1	125	161		


形式	寸法(mm)							
NOIC	QA	QK	W	Т	U	QE	LT	
形R88M- 1AM20030T(-S2/-OS2)	2	20	4-0.03	4	1.5-0.2	M4	10	
形R88M- 1AM40030T(-S2/-OS2)	2	20	5-0.03	5	2-0.2	M5	12	

注. 標準の軸形状はストレート軸です。形式の後ろに 「S2」を付けるとキー・タップ付きとなります。形式の後ろに 「O」を付けるとオイルシール付きとなります。

●200W、400W(ブレーキ付き)

形R88M-1AM20030T-B(O/S2/OS2)、形R88M-1AM40030T-B(O/S2/OS2)

W.,	QA QK
~~ 	
	
QE(タップ) LT(タップ深さ)	
LT(タップ深さ) /	

キー、タップ付き軸端仕様

キー、タップ断面図

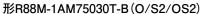
形式	寸法(mm)							
NOIL	S	LL	L1	L2				
形R88M- 1AM20030T-B(S2)	φ11 _{-0.011}	140±1	120	156				
形R88M- 1AM40030T-B(S2)	φ14 _{-0.011}	166±1	146	182				
形R88M- 1AM20030T-B0(S2)	φ11 _{-0.011}	147±1	127	163				
形R88M- 1AM40030T-B0(S2)	φ14-0.011	173±1	153	189				


形式	寸法(mm)							
NOIL	QA	QK	W	Т	U	QE	LT	
形R88M- 1AM20030T-B(S2/OS2)	2	20	4-0.03	4	1.5-0.2	M4	10	
形R88M- 1AM40030T-B(S2/OS2)	2	20	5-0.03	5	2-0.2	M5	12	

注. 標準の軸形状はストレート軸です。形式の後ろに「S2」を付けるとキー・タップ付きとなります。形式の後ろに「O」を付けるとオイルシール付きとなります。

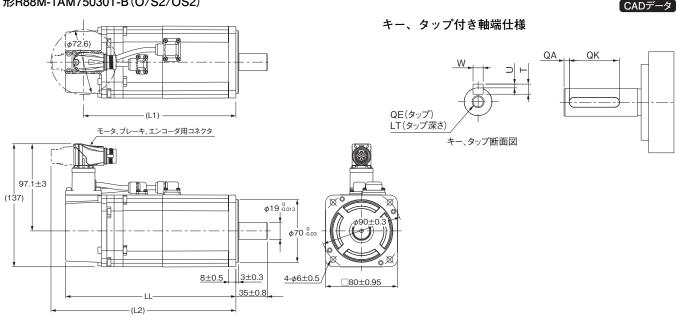
● 750W(ブレーキなし)

形R88M-1AM75030T (-O/-S2/-OS2)


W つ ト ロ ロ ロ ロ ロ ロ ロ ロ ロ ロ ロ ロ ロ ロ ロ ロ ロ ロ	QA QK
---	-------

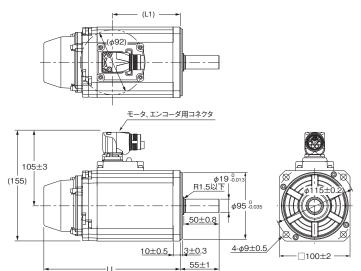
形式			
加拉	LL	L1	L2
形R88M- 1AM75030T(-S2)	154±1	134	170
形R88M- 1AM75030T-0(S2)	161±1	141	177

形式	寸法(mm)							
ガグエし	QA	QK	W	Т	U	QE	LT	
形R88M- 1AM75030T(-S2/-OS2)	3	24	6-0.03	6	2.5-0.2	M5	12	

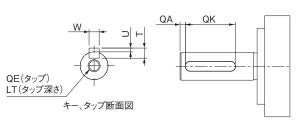

注、標準の軸形状はストレート軸です。形式の後ろに「S2」を付けるとキー・タップ付きとなります。形式の後ろに「O」を付けるとオイルシール付きとなります。

● 750W(ブレーキ付き)

-(L2)


形式	寸法(mm)					
NOIL	LL	L1	L2			
形R88M- 1AM75030T-B(S2)	189.8±2	170	206			
形R88M- 1AM75030T-B0(S2)	196.8±2	177	213			

形式	寸法 (mm)							
NOIL	QA	QK	W	Т	U	QE	LT	
形R88M-1AM75030T- B(S2/OS2)	3	24	6-0.03	6	2.5-0.2	M5	12	

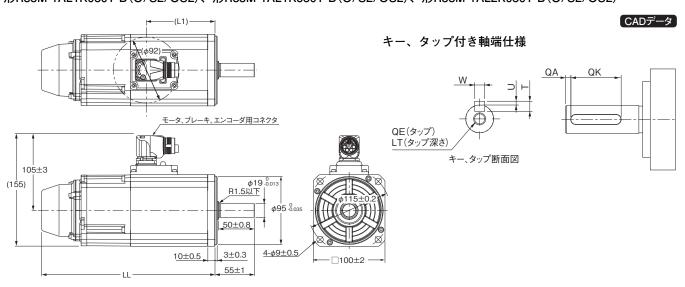

注. 標準の軸形状はストレート軸です。形式の後ろに 「S2」を付けるとキー・タップ付きとなります。形式の後ろに 「O」を付けるとオイルシール付きとなります。

● 1kW、1.5kW、2kW(ブレーキなし)

形R88M-1AL1K030T(-O/-S2/-OS2)、形R88M-1AL1K530T(-O/-S2/-OS2)、形R88M-1AL2K030T(-O/-S2/-OS2)

キー、タップ付き軸端仕様

CADデータ

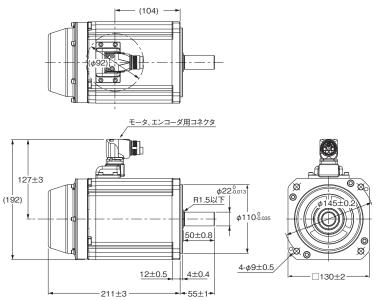

形式	寸法 (mm)				
NOIL	LL	L1			
形R88M- 1AL1K030T(-O/-S2/-OS2)	193.5±2	96			
形R88M- 1AL1K530T(-O/-S2/-OS2)	193.5±2	96			
形R88M- 1AL2K030T(-0/-S2/-OS2)	204.5±3	107			

形式	寸法(mm)							
NOIL	QA	QK	W	Т	U	QE	LT	
形R88M- 1AL1K030T(-S2/-OS2)	3	42	6-0.03	6	2.5_0.2	M5	12	
形R88M- 1AL1K530T(-S2/-OS2)	3	42	6-0.03	6	2.5-0.2	M5	12	
形R88M- 1AL2K030T(-S2/-OS2)	3	42	6-0.03	6	2.5_0.2	M5	12	

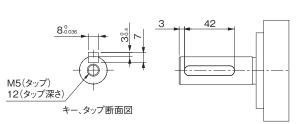
注. 標準の軸形状はストレート軸です。形式の後ろに「S2」を付けるとキー・タップ付きとなります。形式の後ろに「O」を付けるとオイルシール付きとなります。

● 1kW、1.5kW、2kW(ブレーキ付き)

形R88M-1AL1K030T-B(O/S2/OS2)、形R88M-1AL1K530T-B(O/S2/OS2)、形R88M-1AL2K030T-B(O/S2/OS2)


形式	寸法(mm)				
ガクエし	LL	L1			
形R88M- 1AL1K030T-B(0/S2/OS2)	242±3	96			
形R88M- 1AL1K530T-B(0/S2/OS2)	242±3	96			
形R88M- 1AL2K030T-B(0/S2/OS2)	253±3	107			

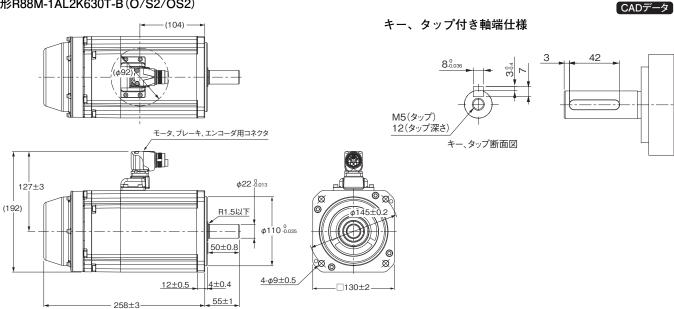
形式	寸法(mm)						
	QA	QK	W	Т	U	QE	LT
形R88M-1AL1K030T- B(S2/OS2)	3	42	6-0.03	6	2.5_0.2	M5	12
形R88M-1AL1K530T- B(S2/OS2)	3	42	6-0.03	6	2.5-0.2	M5	12
形R88M-1AL2K030T-B(S2/OS2)	3	42	6-0.03	6	2.5_0.2	M5	12


注. 標準の軸形状はストレート軸です。形式の後ろに「S2」を付けるとキー・タップ付きとなります。形式の後ろに「O」を付けるとオイルシール付きとなります。

●2.6kW(ブレーキなし)

形R88M-1AL2K630T(-O/-S2/-OS2)

キー、タップ付き軸端仕様

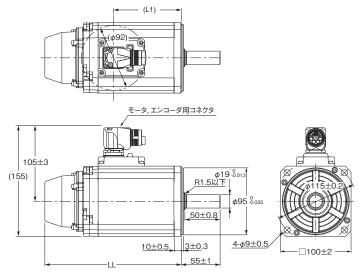

CADデータ

注. 標準の軸形状はストレート軸です。形式の後ろに「S2」を付けるとキー・タップ付き 形式の後ろに「O」を付けるとオイルシール付きとなります。

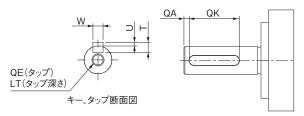
●2.6kW(ブレーキ付き)

形R88M-1AL2K630T-B(O/S2/OS2)

—211±3 —


注. 標準の軸形状はストレート軸です。形式の後ろに「S2」を付けるとキー・タップ付きと 形式の後ろに「O」を付けるとオイルシール付きとなります。

3000r/minモータ(400V)

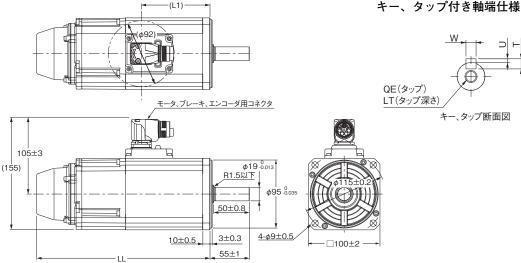

●750W、1kW、1.5kW、2kW(ブレーキなし)

形R88M-1AL75030C(-O/-S2/-OS2)/形R88M-1AL1K030C(-O/-S2/-OS2) 形R88M-1AL1K530C (-O/ -S2/ -OS2) / 形R88M-1AL2K030C (-O/ -S2/ -OS2)

キー、タップ付き軸端仕様

	寸法(mm)				
110350	LL	L1			
形R88M-1AL75030C (-O/-S2/-OS2)	164.5±2	67			
形R88M-1AL1K030C(-0/-S2/-OS2)	193.5±2	96			
形R88M-1AL1K530C(-O/-S2/-OS2)	193.5±2	96			
形R88M-1AL2K030C(-0/-S2/-OS2)	204.5±3	107			

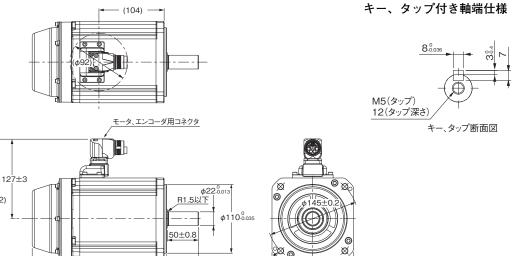
注. 標準の軸形状はストレート軸です。形式の後ろに「S2」を付けると キー・タップ付きとなります。


形式の後ろに「O」を付けるとオイルシール付きとなります。

形式		寸法(mm)									
ガジェし	QA	QK	W	Т	U	QE	LT				
形R88M- 1AL75030C(-S2/-OS2)	3	42	6-0.03	6	2.5_0.2	M5	12				
形R88M- 1AL1K030C(-S2/-OS2)	3	42	6-0.03	6	2.5_0.2	M5	12				
形R88M- 1AL1K530C(-S2/-OS2)	3	42	6-0.03	6	2.5_0.2	M5	12				
形R88M- 1AL2K030C(-S2/-OS2)	3	42	6-0.03	6	2.5_0.2	M5	12				

●750W、1kW、1.5kW、2kW(ブレーキ付き)

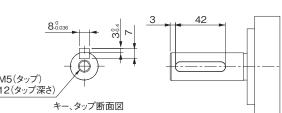
形R88M-1AL75030C-B(O/S2/OS2) / 形R88M-1AL1K030C-B(O/S2/OS2) 形R88M-1AL1K530C-B(O/S2/OS2) / 形R88M-1AL2K030C-B(O/S2/OS2)


	寸法(mm)				
形式	LL	L1			
形R88M-1AL75030C-B(0/S2/OS2)	213±3	67			
形R88M-1AL1K030C-B(0/S2/OS2)	242±3	96			
形R88M-1AL1K530C-B(0/S2/OS2)	242±3	96			
形R88M-1AL2K030C-B(0/S2/OS2)	253±3	107			

注. 標準の軸形状はストレート軸です。形式の後ろに「S2」を付けると ドー・タップ付きとなります。 形式の後ろに「O」を付けるとオイルシール付きとなります。

形式		寸法(mm)									
ガシエし	QA	QK	W	Т	U	QE	LT				
形R88M-1AL75030C- B(S2/OS2)	3	42	6-0.03	6	2.5_0.2	M5	12				
形R88M-1AL1K030C-B(S2/OS2)	3	42	6-0.03	6	2.5-0.2	M5	12				
形R88M-1AL1K530C-B(S2/OS2)	3	42	6-0.03	6	2.5-0.2	M5	12				
形R88M-1AL2K030C- B(S2/OS2)	3	42	6-0.03	6	2.5-0.2	M5	12				

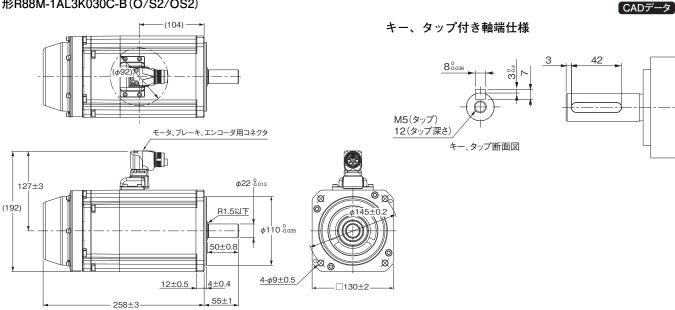
●3kW(ブレーキなし)


形R88M-1AL3K030C (-O/-S2/-OS2)

4-φ9±0.5

注. 標準の軸形状はストレート軸です。形式の後ろに「S2」を付けるとキー・タップ付 形式の後ろに「O」を付けるとオイルシール付きとなります。

4±0.4

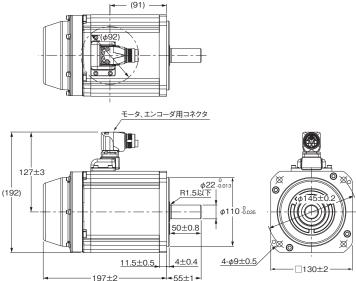

CADデータ

●3kW(ブレーキ付き)

(192)

形R88M-1AL3K030C-B(O/S2/OS2)

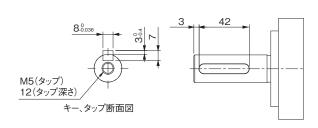
·211±3 —



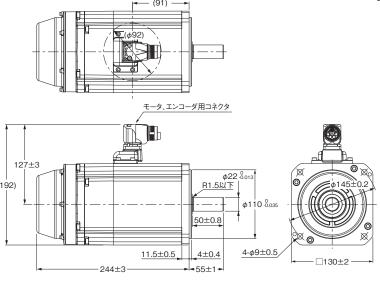
注. 標準の軸形状はストレート軸です。形式の後ろに「S2」を付けるとキー・タップ付きと 形式の後ろに「O」を付けるとオイルシール付きとなります。

1500r/minモータ(200V、400V)

● 1.5kW(ブレーキなし)

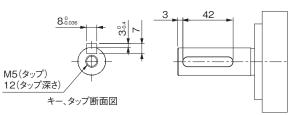

形R88M-1AM1K515T(-O/-S2/-OS2) 形R88M-1AM1K515C(-O/-S2/-OS2)

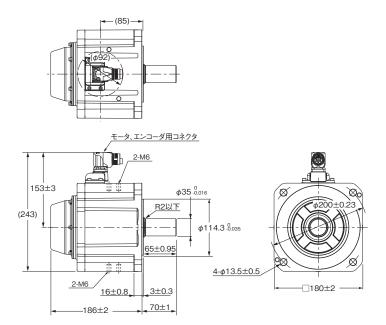
注. 標準の軸形状はストレート軸です。形式の後ろに「S2」を付けるとキー・タップ付き 形式の後ろに「O」を付けるとオイルシール付きとなります。


CADデータ

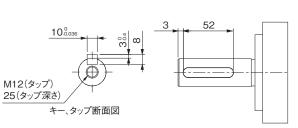
キー、タップ付き軸端仕様

● 1.5kW(ブレーキ付き)


形R88M-1AM1K515T-B(O/S2/OS2) 形R88M-1AM1K515C-B(O/S2/OS2)

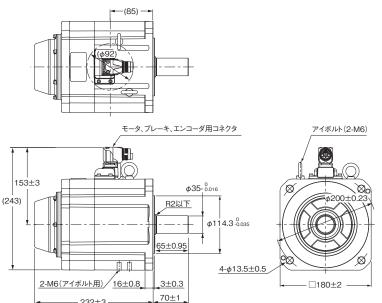

注. 標準の軸形状はストレート軸です。形式の後ろに「S2」を付けるとキー・タップ付きと 形式の後ろに「O」を付けるとオイルシール付きとなります。

CADデータ


キー、タップ付き軸端仕様

- ●2.7kW(ブレーキなし) 形R88M-1AM2K715T(-0/-S2/-OS2)
- ●3kW(ブレーキなし) 形R88M-1AM3K015C(-0/-S2/-OS2)

キー、タップ付き軸端仕様

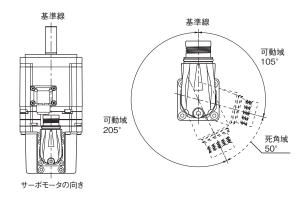


CADデータ

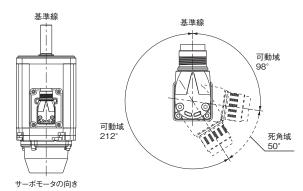
CADデータ

注. 標準の軸形状はストレート軸です。形式の後ろに「S2」を付けるとキー・タップ 付きとなります。 形式の後ろに「O」を付けるとオイルシール付きとなります。

- ●2.7kW(ブレーキ付き) 形R88M-1AM2K715T-B(0/S2/OS2)
- ●3kW(ブレーキ付き) 形R88M-1AM3K015C-B(0/S2/OS2)

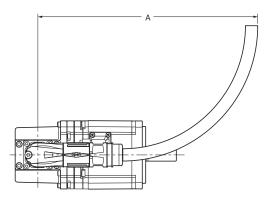

注. 標準の軸形状はストレート軸です。形式の後ろに「S2」を付けるとキー・タップ付きとなります。 形式の後ろに「O」を付けるとオイルシール付きとなります。

体型コネクタのケーブル引き出し方向

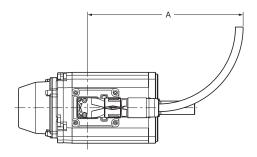

サーボモータの一体型コネクタは、ケーブル引き出し方向を変更することができます。 変更することができる範囲を以降に示します。

引き出し方向の変更は最大5回です。ケーブル引き出し方向を変更する手順については、「ACサーボモータ/ドライバ1Sシリー ズEtherCAT®通信内蔵タイプ安全機能対応ユーザーズマニュアル(マニュアル番号:SBCE-438)」を参照してください。

コネクタM17タイプのケーブル引き出し方向


コネクタM23タイプのケーブル引き出し方向

サーボモータ敷設時に必要なケーブルの設置寸法


サーボモータを敷設するときに必要な一体型ケーブルの設置寸法を、サーボモータのコネクタタイプ別に示します。 一体型ケーブルを最小曲げ半径(ケーブルシース外径の10倍)で設置したときの、一体型コネクタの回転中心から一体型ケーブルの外周までの寸法をAとして、以降に示します。

コネクタM17タイプのサーボモータ

形式	寸法(mm)
ガシエ	Α
形R88M-1AM20030T(-0/-S2/-OS2)	
形R88M-1AM40030T (-O/-S2/-OS2)	
形R88M-1AM75030T (-0/-S2/-OS2)	010
形R88M-1AM20030T-B(0/S2/OS2)	210
形R88M-1AM40030T-B(O/S2/OS2)	
形R88M-1AM75030T-B(O/S2/OS2)	

コネクタM23タイプのサーボモータ

形式	寸法(mm)
ПЭІС	Α
形R88M-1AL75030C(-S2/-O/-OS2/-B/-BS2/-BO/-BOS2)	
形R88M-1AL1K030T(-S2/-O/-OS2/-B/-BS2/-BO/-BOS2)	
形R88M-1AL1K030C(-S2/-O/-OS2/-B/-BS2/-BO/-BOS2)	
形R88M-1AL1K530T(-S2/-O/-OS2/-B/-BS2/-BO/-BOS2)	
形R88M-1AL1K530C(-S2/-O/-OS2/-B/-BS2/-BO/-BOS2)	
形R88M-1AL2K030T(-S2/-O/-OS2/-B/-BS2/-B0/-BOS2)	
形R88M-1AL2K030C(-S2/-O/-OS2/-B/-BS2/-BO/-BOS2)	270
形R88M-1AL2K630T(-S2/-O/-OS2/-B/-BS2/-BO/-BOS2)	
形R88M-1AL3K030C(-S2/-O/-OS2/-B/-BS2/-BO/-BOS2)	
形R88M-1AM1K515T(-S2/-O/-OS2/-B/-BS2/-BO/-BOS2)	
形R88M-1AM1K515C(-S2/-O/-OS2/-B/-BS2/-BO/-BOS2)	
形R88M-1AM2K715T(-S2/-O/-OS2/-B/-BS2/-BO/-BOS2)	
形R88M-1AM3K015C(-S2/-O/-OS2/-B/-BS2/-BO/-BOS2)	

MEMO

減速機 ACサーボシステム 1Sシリーズ安全機能対応 R88G-HPG / VRXF

目次

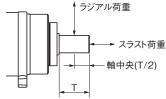
- •種類/標準価格
- 仕様
- 外形寸法

種類/標準価格

ご注文の手引きをご参照ください。

仕様

バックラッシュ 3分以内

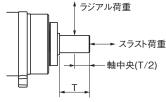

●3000r/minモータ用

定格 回転数 r/min 600	定格 トルク N·m	効率	瞬時最大 回転数	瞬時最大 トルク	減速機 イナーシャ	許容 ラジアル	許容 スラスト	質量
	N·m					荷重	荷重	貝里
600		%	r/min	N·m	$\times 10^{-4} \text{kg} \cdot \text{m}^2$	N	N	kg
	2.4	75.4	1200	9.7	0.207	221	883	1.0
272	5.8	82.6	545	21.8	0.197	280	1119	1.1
142	10.2	76.2	285	41.7	0.49	800	2817	2.9
90	17.0	80.6	181	66.5	0.45	916	3226	2.9
66	23.5	82.1	133	91.1	0.45	1006	3541	2.9
600	5.3	84.2	1200	20.4	0.207	221	883	1.1
272	11.4	81.6	545	45.5	0.57	659	2320	2.9
142	23.0	86.1	285	88.1	0.49	800	2817	2.9
90	33.8	80.7	181	136.2	0.62	1565	6240	7.5
66	46.6	81.5	133	186.1	0.61	1718	6848	7.5
600	9.9	82.9	1200	38.7	0.68	520	1832	2.9
272	20.0 *1	87.2	545	86.7	0.6	659	2320	3.1
142	42.1	84.0	285	163.3	3.0	1367	5448	7.8
90	69.3	87.9	181	259.7	2.7	1565	6240	7.8
66	94.9	88.3	133	299.0 *2	2.7	1718	6848	7.8
600	7.7	64.3	1000	30.6	3.8	889	3542	7.4
272	20.5	78.0	454	70.9	3.4	1126	4488	7.9
142	42.1	84.0	238	138.3	3.0	1367	5448	7.9
90	69.3	87.9	151	220.4	2.7	1565	6240	7.9
600	11.5	72.2	1000	42.0	3.8	889	3542	7.4
272	28.9	82.5	454	96.1	3.4	1126	4488	7.9
142	58.1	86.9	238	186.5	3.0	1367	5448	7.9
600	19.1	80.1	1000	64.8	3.8	889	3542	7.4
272	45.7	87.0	454	146.3	3.4	1126	4488	7.9
142	90.1	90.0	238	282.2	3.0	1367	5448	7.9
	142 90 66 600 272 142 90 66 600 272 142 90 66 600 272 142 90 600 272 142 90 600 272	142 10.2 90 17.0 66 23.5 600 5.3 272 11.4 142 23.0 90 33.8 66 46.6 600 9.9 272 20.0 *1 142 42.1 90 69.3 66 94.9 600 7.7 272 20.5 142 42.1 90 69.3 600 11.5 272 28.9 142 58.1 600 19.1 272 45.7	142 10.2 76.2 90 17.0 80.6 66 23.5 82.1 600 5.3 84.2 272 11.4 81.6 142 23.0 86.1 90 33.8 80.7 66 46.6 81.5 600 9.9 82.9 272 20.0 * 1 87.2 142 42.1 84.0 90 69.3 87.9 66 94.9 88.3 600 7.7 64.3 272 20.5 78.0 142 42.1 84.0 90 69.3 87.9 600 11.5 72.2 272 28.9 82.5 142 58.1 86.9 600 19.1 80.1 272 45.7 87.0	142 10.2 76.2 285 90 17.0 80.6 181 66 23.5 82.1 133 600 5.3 84.2 1200 272 11.4 81.6 545 142 23.0 86.1 285 90 33.8 80.7 181 66 46.6 81.5 133 600 9.9 82.9 1200 272 20.0 *1 87.2 545 142 42.1 84.0 285 90 69.3 87.9 181 66 94.9 88.3 133 600 7.7 64.3 1000 272 20.5 78.0 454 142 42.1 84.0 238 90 69.3 87.9 151 600 11.5 72.2 1000 272 28.9 82.5 454 142 58.1	142 10.2 76.2 285 41.7 90 17.0 80.6 181 66.5 66 23.5 82.1 133 91.1 600 5.3 84.2 1200 20.4 272 11.4 81.6 545 45.5 142 23.0 86.1 285 88.1 90 33.8 80.7 181 136.2 66 46.6 81.5 133 186.1 600 9.9 82.9 1200 38.7 272 20.0 *1 87.2 545 86.7 142 42.1 84.0 285 163.3 90 69.3 87.9 181 259.7 66 94.9 88.3 133 299.0 *2 600 7.7 64.3 1000 30.6 272 20.5 78.0 454 70.9 142 42.1 84.0 238 138.3 <t< td=""><td>142 10.2 76.2 285 41.7 0.49 90 17.0 80.6 181 66.5 0.45 66 23.5 82.1 133 91.1 0.45 600 5.3 84.2 1200 20.4 0.207 272 11.4 81.6 545 45.5 0.57 142 23.0 86.1 285 88.1 0.49 90 33.8 80.7 181 136.2 0.62 66 46.6 81.5 133 186.1 0.61 600 9.9 82.9 1200 38.7 0.68 272 20.0 *1 87.2 545 86.7 0.6 142 42.1 84.0 285 163.3 3.0 90 69.3 87.9 181 259.7 2.7 66 94.9 88.3 133 299.0 *2 2.7 600 7.7 64.3 1000 <t< td=""><td>142 10.2 76.2 285 41.7 0.49 800 90 17.0 80.6 181 66.5 0.45 916 66 23.5 82.1 133 91.1 0.45 1006 600 5.3 84.2 1200 20.4 0.207 221 272 11.4 81.6 545 45.5 0.57 659 142 23.0 86.1 285 88.1 0.49 800 90 33.8 80.7 181 136.2 0.62 1565 66 46.6 81.5 133 186.1 0.61 1718 600 9.9 82.9 1200 38.7 0.68 520 272 20.0 *1 87.2 545 86.7 0.6 659 142 42.1 84.0 285 163.3 3.0 1367 90 69.3 87.9 181 259.7 2.7 1565</td><td>142 10.2 76.2 285 41.7 0.49 800 2817 90 17.0 80.6 181 66.5 0.45 916 3226 66 23.5 82.1 133 91.1 0.45 1006 3541 600 5.3 84.2 1200 20.4 0.207 221 883 272 11.4 81.6 545 45.5 0.57 659 2320 142 23.0 86.1 285 88.1 0.49 800 2817 90 33.8 80.7 181 136.2 0.62 1565 6240 66 46.6 81.5 133 186.1 0.61 1718 6848 600 9.9 82.9 1200 38.7 0.68 520 1832 272 20.0 *1 87.2 545 86.7 0.6 659 2320 142 42.1 84.0 285 163.3</td></t<></td></t<>	142 10.2 76.2 285 41.7 0.49 90 17.0 80.6 181 66.5 0.45 66 23.5 82.1 133 91.1 0.45 600 5.3 84.2 1200 20.4 0.207 272 11.4 81.6 545 45.5 0.57 142 23.0 86.1 285 88.1 0.49 90 33.8 80.7 181 136.2 0.62 66 46.6 81.5 133 186.1 0.61 600 9.9 82.9 1200 38.7 0.68 272 20.0 *1 87.2 545 86.7 0.6 142 42.1 84.0 285 163.3 3.0 90 69.3 87.9 181 259.7 2.7 66 94.9 88.3 133 299.0 *2 2.7 600 7.7 64.3 1000 <t< td=""><td>142 10.2 76.2 285 41.7 0.49 800 90 17.0 80.6 181 66.5 0.45 916 66 23.5 82.1 133 91.1 0.45 1006 600 5.3 84.2 1200 20.4 0.207 221 272 11.4 81.6 545 45.5 0.57 659 142 23.0 86.1 285 88.1 0.49 800 90 33.8 80.7 181 136.2 0.62 1565 66 46.6 81.5 133 186.1 0.61 1718 600 9.9 82.9 1200 38.7 0.68 520 272 20.0 *1 87.2 545 86.7 0.6 659 142 42.1 84.0 285 163.3 3.0 1367 90 69.3 87.9 181 259.7 2.7 1565</td><td>142 10.2 76.2 285 41.7 0.49 800 2817 90 17.0 80.6 181 66.5 0.45 916 3226 66 23.5 82.1 133 91.1 0.45 1006 3541 600 5.3 84.2 1200 20.4 0.207 221 883 272 11.4 81.6 545 45.5 0.57 659 2320 142 23.0 86.1 285 88.1 0.49 800 2817 90 33.8 80.7 181 136.2 0.62 1565 6240 66 46.6 81.5 133 186.1 0.61 1718 6848 600 9.9 82.9 1200 38.7 0.68 520 1832 272 20.0 *1 87.2 545 86.7 0.6 659 2320 142 42.1 84.0 285 163.3</td></t<>	142 10.2 76.2 285 41.7 0.49 800 90 17.0 80.6 181 66.5 0.45 916 66 23.5 82.1 133 91.1 0.45 1006 600 5.3 84.2 1200 20.4 0.207 221 272 11.4 81.6 545 45.5 0.57 659 142 23.0 86.1 285 88.1 0.49 800 90 33.8 80.7 181 136.2 0.62 1565 66 46.6 81.5 133 186.1 0.61 1718 600 9.9 82.9 1200 38.7 0.68 520 272 20.0 *1 87.2 545 86.7 0.6 659 142 42.1 84.0 285 163.3 3.0 1367 90 69.3 87.9 181 259.7 2.7 1565	142 10.2 76.2 285 41.7 0.49 800 2817 90 17.0 80.6 181 66.5 0.45 916 3226 66 23.5 82.1 133 91.1 0.45 1006 3541 600 5.3 84.2 1200 20.4 0.207 221 883 272 11.4 81.6 545 45.5 0.57 659 2320 142 23.0 86.1 285 88.1 0.49 800 2817 90 33.8 80.7 181 136.2 0.62 1565 6240 66 46.6 81.5 133 186.1 0.61 1718 6848 600 9.9 82.9 1200 38.7 0.68 520 1832 272 20.0 *1 87.2 545 86.7 0.6 659 2320 142 42.1 84.0 285 163.3

サーボ モータ 減速 定格出力	減速比	形式	定格 回転数	定格 トルク	効率	瞬時最大 回転数	瞬時最大トルク	減速機 イナーシャ	許容 ラジアル 荷重	許容 スラスト 荷重	質量
			r/min	N·m	%	r/min	N·m	$\times 10^{-4} \text{kg} \cdot \text{m}^2$	N	N	kg
OFW	1/5	形R88G-HPG32A052K0B□	600	26.8	84.1	1000	87.9	3.8	889	3542	7.4
2kW	1/11	形R88G-HPG32A112K0B□	272	62.5	89.3	454	197.0	3.4	1126	4488	7.9
2.6kW (200V)	1/5	形R88G-HPG32A053K0B□	600	36.0	86.8	1000	115.2	3.8	889	3542	7.3
3kW (400V)	1/5	形R88G-HPG32A053K0B□	600	42.0	88.1	1000	134.0	3.8	889	3542	7.3

- *1. 滅速機の許容連続出力トルクです。この値を超えないように注意してください。 *2. 滅速機の最大許容トルクです。この値を超えないように注意してください。 注1. 滅速機イナーシャは、モータ軸換算の値です。 2. 滅速機付きモータの保護構造はIP44です。

- 3. 許容ラジアル荷重は、軸中央(T/2)の位置での値を示します。

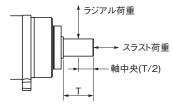


- 4. 標準の軸形状はストレート軸です。形式の後ろの□に「J」を付けるとキー、タップ付きになります。 5. 減速機の表面温度が70℃を超えないようにしてください。

● 1500r/minモータ用

		_									
サーボモータ	減速比	比 形式	定格 回転数	定格 トルク	効率	瞬時最大 回転数	瞬時最大 トルク	減速機 イナーシャ	許容 ラジアル 荷重	許容 スラスト 荷重	質量
定格出力			r/min	N·m	%	r/min	N·m	$\times 10^{-4} \text{kg} \cdot \text{m}^2$	N	Ν	kg
	1/5	形R88G-HPG32A053K0B□	300	43.8	91.7	600	135.7	3.8	889	3542	7.3
1.5kW	1/11	形R88G-HPG32A112K0SB□	136	98.1	93.4	272	299.0 *1	3.4	1126	4488	7.8
1.5KVV	1/21	形R88G-HPG50A21900TB□	71	187.2	93.3	142	573.2	7.0	3611	12486	19.1
	1/33	形R88G-HPG50A33900TB□	45	294.1 *2	94.1	90	849.0 *1	5.9	4135	14300	19.1
	1/5	形R88G-HPG50A055K0SB□	300	79.2	92.1	600	244.3	11	2347	8118	22.0
2.7kW	1/11	形R88G-HPG50A115K0SB□	136	177.8	94.0	272	541.1	8.4	2974	10285	23.5
(200V)	1/20	形R88G-HPG65A205K0SB□	75	315.6	91.7	150	976.0	14	7338	26799	55.4
	1/25	形R88G-HPG65A255K0SB□	60	396.8	92.3	120	1222.4	14	7846	28654	55.4
	1/5	形R88G-HPG50A055K0SB□	300	88.3	92.5	600	271.7	11	2347	8118	22.0
3kW	1/11	形R88G-HPG50A115K0SB□	136	197.9	94.2	272	601.2	8.4	2974	10285	23.5
(400V)	1/20	形R88G-HPG65A205K0SB□	75	352.0	92.2	150	1085.5	14	7338	26799	55.4
	1/25	形R88G-HPG65A255K0SB□	60	442.4	92.7	120	1359.2	14	7846	28654	55.4

- *1. 滅速機の最大許容トルクです。この値を超えないように注意してください。 *2. 滅速機の許容連続出力トルクです。この値を超えないように注意してください。 注1. 滅速機イナーシャは、モータ軸換算の値です。 2. 滅速機付きモータの保護構造はIP44です。 3. 許容ラジアル荷重は、軸中央(T/2)の位置での値を示します。


- 4. 標準の軸形状はストレート軸です。形式の後ろの□に「J」を付けるとキー、タップ付きになります。 5. 減速機の表面温度が70℃を超えないようにしてください。

バックラッシュ 15分以内

●3000r/minモータ用

	減速比	13比 形式	定格 回転数	定格 トルク	効率	瞬時最大 回転数	瞬時最大 トルク	減速機 イナーシャ	許容 ラジアル 荷重	許容 スラスト 荷重	質量
定格出力			r/min	N·m	%	r/min	N·m	$ imes 10^{-4} kg \cdot m^2$	N	N	kg
	1/5	形R88G-VRXF05B200CJ	600	2.93	92	1200	9.94 *	0.147	392	196	0.72
200W	1/9	形R88G-VRXF09C200CJ	333	4.76	83	667	16.43	0.273	931	465	1.70
200W	1/15	形R88G-VRXF15C200CJ	200	8.22	86	400	28.38	0.302	1176	588	2.10
	1/25	形R88G-VRXF25C200CJ	120	13.70	86	240	47.30	0.293	1323	661	2.10
	1/5	形R88G-VRXF05C400CJ	600	5.59	88	1200	19.80	0.370	784	392	1.70
400W	1/9	形R88G-VRXF09C400CJ	333	10.06	88	667	34.00 *	0.273	931	465	1.70
40000	1/15	形R88G-VRXF15C400CJ	200	16.95	89	400	56.70 *	0.302	1176	588	2.10
	1/25	形R88G-VRXF25C400CJ	120	28.26	89	240	92.40 *	0.293	1323	661	2.10
	1/5	形R88G-VRXF05C750CJ	600	10.99	92	1200	38.64	0.817	784	392	2.10
750W	1/9	形R88G-VRXF09D750CJ	333	19.57	91	667	63.70 *	0.755	1176	588	3.40
(200V)	1/15	形R88G-VRXF15D750CJ	200	31.91	89	400	106.00 *	0.685	1372	686	3.80
	1/25	形R88G-VRXF25D750CJ	120	53.18	89	240	177.00 *	0.658	1617	808	3.80

- *減速機の最大許容トルクです。この値を超えないように注意してください。 注1. 減速機イナーシャは、モータ軸換算の値です。 2. 減速機とモータを組み合わせた場合の保護構造はIP44になります。 (減速機とサーボモータの結合部は除く)
 - 3. 許容ラジアル荷重は、軸中央(T/2)の位置での値を示します。

- 4. 標準の軸形状はキー・タップ付きとなります。(キーは仮組状態で同梱されています。) 5. 減速機の表面温度が90℃を超えないようにしてください。

外形寸法

【CADデータ】マークの商品は、2次元CAD図面・3次元CADモデルのデータをご用意しています。 CADデータは、www.fa.omron.co.jp からダウンロードができます。

(単位:mm)

バックラッシュ 3分以内

●3000r/minモータ用(200~750W)

									7	ナ法(mn	1)					
サーボ モータ 定格出力	減速比	形式	外形図	LM	LR	C1	C2	D1	D2	D3	D4	D5	D6 *1	E	F1	F2
	1/5	形R88G-HPG14A05200B□	1	64.0	58	60	□60	70	70	56	55.5	40		37	2.5	21
	1/11	形R88G-HPG14A11200B□	1	64.0	58	60	□60	70	70	56	55.5	40	-	37	2.5	21
200W	1/21	形R88G-HPG20A21200B□	2	71.0	80	90	φ89	105	70	85	84	59	_	53	7.5	27
	1/33	形R88G-HPG20A33200B□	2	71.0	80	90	φ89	105	70	85	84	59	-	53	7.5	27
	1/45	形R88G-HPG20A45200B□	2	71.0	80	90	φ89	105	70	85	84	59	-	53	7.5	27
	1/5	形R88G-HPG14A05400B□	1	64	58	60	□60	70	70	56	55.5	40	I	37	2.5	21
	1/11	形R88G-HPG20A11400B□	2	71	80	90	φ89	105	70	85	84	59	I	53	7.5	27
400W	1/21	形R88G-HPG20A21400B□	2	71	80	90	φ89	105	70	85	84	59	-	53	7.5	27
	1/33	形R88G-HPG32A33400B□	2	104	133	120	φ122	135	70	115	114	84	-	98	12.5	35
	1/45	形R88G-HPG32A45400B□	2	104	133	120	φ122	135	70	115	114	84	-	98	12.5	35
	1/5	形R88G-HPG20A05750B□	1	78	80	90	□80	105	90	85	84	59	89	53	7.5	27
	1/11	形R88G-HPG20A11750B□	1	78	80	90	□80	105	90	85	84	59	89	53	7.5	27
750W (200V)	1/21	形R88G-HPG32A21750B□	2	104	133	120	φ122	135	90	115	114	84	-	98	12.5	35
,	1/33	形R88G-HPG32A33750B□	2	104	133	120	φ122	135	90	115	114	84	-	98	12.5	35
	1/45	形R88G-HPG32A45750B□	2	104	133	120	φ122	135	90	115	114	84	-	98	12.5	35
	1/5	形R88G-HPG32A052K0B□	2	110	133	120	φ135	135	115	115	114	84	-	98	12.5	35
750W	1/11	形R88G-HPG32A112K0B□	2	110	133	120	φ135	135	115	115	114	84	-	98	12.5	35
(400V)	1/21	形R88G-HPG32A211K5B□	2	110	133	120	φ135	135	115	115	114	84	ı	98	12.5	35
	1/33	形R88G-HPG32A33600SB□	2	110	133	120	φ135	135	115	115	114	84	_	98	12.5	35

サーボ								寸法(mm)						
モータ	減速比	形式	G	S	Т	Z1	Z2	AT *2		キー音	『寸法		タッフ	プ寸法
定格出力			G	5	ı	21	22	AI *Z	QK	b	h	t1	М	L
	1/5	形R88G-HPG14A05200B□	8	16	28	5.5	M4×10	M4	25	5	5	3	M4	8
	1/11	形R88G-HPG14A11200B□	8	16	28	5.5	M4×10	M4	25	5	5	3	M4	8
200W	1/21	形R88G-HPG20A21200B□	10	25	42	9	M4×10	M4	36	8	7	4	M6	12
	1/33	形R88G-HPG20A33200B□	10	25	42	9	M4×10	M4	36	8	7	4	M6	12
	1/45	形R88G-HPG20A45200B□	10	25	42	9	M4×10	M4	36	8	7	4	M6	12
	1/5	形R88G-HPG14A05400B□	8	16	28	5.5	M4×10	M4	25	5	5	3	M4	8
	1/11	形R88G-HPG20A11400B□	10	25	42	9	$M4 \times 10$	M4	36	8	7	4	M6	12
400W	1/21	形R88G-HPG20A21400B□	10	25	42	9	M4×10	M4	36	8	7	4	M6	12
	1/33	形R88G-HPG32A33400B□	13	40	82	11	M4×10	M4	70	12	8	5	M10	20
	1/45	形R88G-HPG32A45400B□	13	40	82	11	M4×10	M4	70	12	8	5	M10	20
	1/5	形R88G-HPG20A05750B□	10	25	42	9	M5×12	M4	36	8	7	4	M6	12
	1/11	形R88G-HPG20A11750B□	10	25	42	9	M5×12	M4	36	8	7	4	M6	12
750W (200V)	1/21	形R88G-HPG32A21750B□	13	40	82	11	M5×12	М6	70	12	8	5	M10	20
, ,	1/33	形R88G-HPG32A33750B□	13	40	82	11	M5×12	М6	70	12	8	5	M10	20
	1/45	形R88G-HPG32A45750B□	13	40	82	11	M5×12	М6	70	12	8	5	M10	20
	1/5	形R88G-HPG32A052K0B□	13	40	82	11	M8×10	М6	70	12	8	5	M10	20
750W	1/11	形R88G-HPG32A112K0B□	13	40	82	11	M8×10	М6	70	12	8	5	M10	20
(400V)	1/21	形R88G-HPG32A211K5B□	13	40	82	11	M8×10	М6	70	12	8	5	M10	20
	1/33	形R88G-HPG32A33600SB□	13	40	82	11	M8×10	М6	70	12	8	5	M10	20

^{*1.}D6は減速機の取付フランジ面(外形図参照)から、モータ取付面(外形図参照)の間の最大径を示しています。両面より径が大きい場合のみ、値を記載しています。機械への取付の際、ご留意ください。
*2.セットボルトのことです。
注1.標準の軸形状はストレート軸です。
2. 形式の後ろの□に「J」を付けると、キー、タップ付きになります。

例:形R88G-HPG14A05400BJ 3.モータ軸挿入部の径は、対応するモータの軸径と同様です。 4.キー付きモータには使用できません。

^{5.} 本書記載の外形寸法図は主要寸法を表すものであり、製品の詳細な形状を示すものではありません。

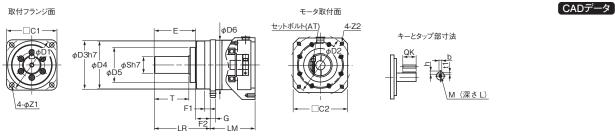
- LR F2 G LM

外形図1 CADデータ 取付フランジ面 モータ取付面 セットボルト(AT) φD6 キーとタップ部寸法 φD3h7 M (深さL) IR-外形図2 CADデータ 取付フランジ面 モータ取付面 セットボルト(AT) 4-Z2 φD6 _C1 キーとタップ部寸法 04 | φSh7 | φD5 φD3h7

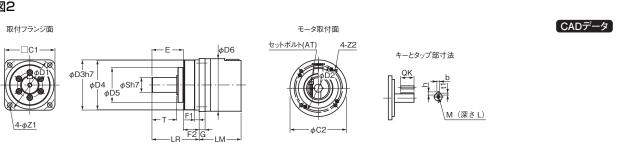
M (深さL)

●3000r/minモータ用(1~3kW)

									7	ナ法 (mm	1)					
サーボ モータ 定格出力	減速比	形式	外形図	LM	LR	C1	C2	D1	D2	D3	D4	D5	D6 *1	Е	F1	F2
	1/5	形R88G-HPG32A052K0B□	2	110	133	120	φ135	135	115	115	114	84	_	98	12.5	35
1kW	1/11	形R88G-HPG32A112K0B□	2	110	133	120	φ135	135	115	115	114	84	_	98	12.5	35
	1/21	形R88G-HPG32A211K5B□	2	110	133	120	φ135	135	115	115	114	84	_	98	12.5	35
	1/5	形R88G-HPG32A052K0B□	2	110	133	120	φ135	135	115	115	114	84	_	98	12.5	35
1.5kW	1/11	形R88G-HPG32A112K0B□	2	110	133	120	φ135	135	115	115	114	84	_	98	12.5	35
	1/21	形R88G-HPG32A211K5B□	2	110	133	120	φ135	135	115	115	114	84	_	98	12.5	35
OLAM	1/5	形R88G-HPG32A052K0B□	2	110	133	120	φ135	135	115	115	114	84	_	98	12.5	35
2kW	1/11	形R88G-HPG32A112K0B□	2	110	133	120	φ135	135	115	115	114	84	_	98	12.5	35
2.6kW (200V) 3kW (400V)	1/5	形R88G-HPG32A053K0B□	1	107	133	120	□130	135	145	115	114	84	_	98	12.5	35


サーボ								寸法(mm)						
モータ	減速比	形式	G	S	т	<i>Z</i> 1	72	AT *2		キーキ	部寸法		タッフ	プ寸法
定格出力			5	0	ı	21	22	AI *Z	QK	b	h	t1	М	L
	1/5	形R88G-HPG32A052K0B□	13	40	82	11	M8×10	М6	70	12	8	5	M10	20
1kW	1/11	形R88G-HPG32A112K0B□	13	40	82	11	M8×10	М6	70	12	8	5	M10	20
	1/21	形R88G-HPG32A211K5B□	13	40	82	11	M8×10	М6	70	12	8	5	M10	20
	1/5	形R88G-HPG32A052K0B□	13	40	82	11	M8×10	М6	70	12	8	5	M10	20
1.5kW	1/11	形R88G-HPG32A112K0B□	13	40	82	11	M8×10	М6	70	12	8	5	M10	20
	1/21	形R88G-HPG32A211K5B□	13	40	82	11	M8×10	М6	70	12	8	5	M10	20
OLAM	1/5	形R88G-HPG32A052K0B□	13	40	82	11	M8×10	М6	70	12	8	5	M10	20
2kW	1/11	形R88G-HPG32A112K0B□	13	40	82	11	M8×10	M6	70	12	8	5	M10	20
2.6kW (200V) 3kW (400V)	1/5	形R88G-HPG32A053K0B□	13	40	82	11	M8×18	M6	70	12	8	5	M10	20

- *1.D6は減速機の取付フランジ面(外形図参照)から、モータ取付面(外形図参照)の間の最大径を示しています。両面より径が大きい場合のみ、値を記載しています。機械への取付の際、ご留意ください。
 *2.セットボルトのことです。
 注1.標準の軸形状はストレート軸です。
 2.形式の後ろの□に「J」を付けると、キー、タップ付きになります。

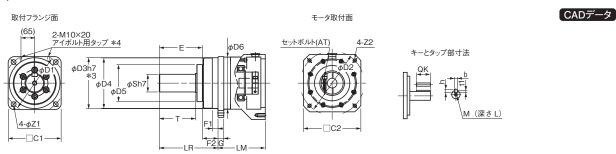

- - 例:形R88G-HPG32A052K0BJ

- 3. モータ軸挿入部の径は、対応するモータの軸径と同様です。 4. キー付きモータには使用できません。 5. 本書記載の外形寸法図は主要寸法を表すものであり、製品の詳細な形状を示すものではありません。

外形図1

外形図2

● 1500r/minモータ用(1.5~3kW)


									7	ナ法(mm	1)					
サーボ モータ 定格出力	減速比	形式	外形図	LM	LR	C1	C2	D1	D2	D3	D4	D5	D6 *1	Е	F1	F2
	1/5	形R88G-HPG32A053K0B□	1	107	133	120	□130	135	145	115	114	84	_	98	12.5	35
1.5kW	1/11	形R88G-HPG32A112K0SB□	1	107	133	120	□130	135	145	115	114	84		98	12.5	35
1.5KVV	1/21	形R88G-HPG50A21900TB□	1	149	156	170	□130	190	145	165	163	122	170	103	12	53
	1/33	形R88G-HPG50A33900TB□	1	149	156	170	□130	190	145	165	163	122	170	103	12	53
	1/5	形R88G-HPG50A055K0SB□	1	149	156	170	□180	190	200	165	163	122		103	12	53
2.7kW (200V)	1/11	形R88G-HPG50A115K0SB□	1	149	156	170	□180	190	200	165	163	122		103	12	53
3kW (400V)	1/20	形R88G-HPG65A205K0SB□	1	231	222	230	□180	260	200	220	214	168	220	165	12	57
(4007)	1/25	形R88G-HPG65A255K0SB□	1	231	222	230	□180	260	200	220	214	168	220	165	12	57

サーボ								寸法(mm)						
モータ	減速比	形式	G	S	т	Z1	72	AT *2		キー部	邓寸法		タッフ	プ寸法
定格出力			5	3		21	22	AI TZ	QK	b	h	t1	М	L
	1/5	形R88G-HPG32A053K0B□	13	40	82	11	M8×18	М6	70	12	8	5	M10	20
1.5kW	1/11	形R88G-HPG32A112K0SB□	13	40	82	11	M8×18	М6	70	12	8	5	M10	20
1.5KW	1/21	形R88G-HPG50A21900TB□	16	50	82	14	M8×25	М6	70	14	9	5.5	M10	20
	1/33	形R88G-HPG50A33900TB□	16	50	82	14	M8×25	М6	70	14	9	5.5	M10	20
	1/5	形R88G-HPG50A055K0SB□	16	50	82	14	M12×25	М6	70	14	9	5.5	M10	20
2.7kW (200V)	1/11	形R88G-HPG50A115K0SB□	16	50	82	14	M12×25	М6	70	14	9	5.5	M10	20
3kW (400V)	1/20	形R88G-HPG65A205K0SB□	25	80	130	18	M12×25	M8	110	22	14	9	M16	35
(4001)	1/25	形R88G-HPG65A255K0SB□	25	80	130	18	M12×25	M8	110	22	14	9	M16	35

- *1.D6は減速機の取付フランジ面(外形図参照)から、モータ取付面(外形図参照)の間の最大径を示しています。両面より径が大きい場合のみ、値を記載しています。機械への取付の際、ご留意ください。
 *2.セットボルトのことです。
 注1.標準の軸形状はストレート軸です。
 2.形式の後ろの□に「J」を付けると、キー、タップ付きになります。
- - 例:形R88G-HPG32A053K0BJ
 - 3. モータ軸挿入部の径は、対応するモータの軸径と同様です。 4. キー付きモータには使用できません。

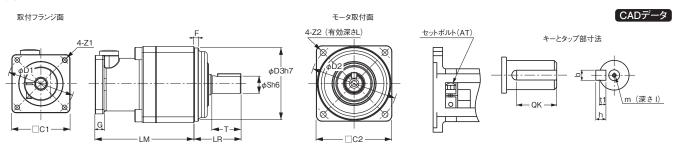
 - 5. 本書記載の外形寸法図は主要寸法を表すものであり、製品の詳細な形状を示すものではありません。

外形図

*3.形R88G-HPG50□、R88G-HPG65□の公差は「h8」です。 *4.形R88G-HPG65□にはアイボルト用タップが付いています。

バックラッシュ 15分以内

●3000r/minモータ用


	形式							寸法(mm)					
		形式	LM	LR	C1	C2	D1	D2	D3	F	G	S	Т
	1/5	形R88G-VRXF05B200CJ	72.5	32	60	52	70	60	50	3	10	12	20
200W	1/9	形R88G-VRXF09C200CJ	89.5	50	60	78	70	90	70	3	8	19	30
200VV	1/15	形R88G-VRXF15C200CJ	100.0	50	60	78	70	90	70	3	8	19	30
	1/25	形R88G-VRXF25C200CJ	100.0	50	60	78	70	90	70	3	8	19	30
	1/5	形R88G-VRXF05C400CJ	89.5	50	60	78	70	90	70	3	8	19	30
400W	1/9	形R88G-VRXF09C400CJ	89.5	50	60	78	70	90	70	3	8	19	30
40000	1/15	形R88G-VRXF15C400CJ	100.0	50	60	78	70	90	70	3	8	19	30
	1/25	形R88G-VRXF25C400CJ	100.0	50	60	78	70	90	70	3	8	19	30
	1/5	形R88G-VRXF05C750CJ	93.5	50	80	78	90	90	70	3	10	19	30
750W	1/9	形R88G-VRXF09D750CJ	97.5	61	80	98	90	115	90	5	10	24	40
(200V)	1/15	形R88G-VRXF15D750CJ	110.0	61	80	98	90	115	90	5	10	24	40
	1/25	形R88G-VRXF25D750CJ	110.0	61	80	98	90	115	90	5	10	24	40

							寸法	(mm)				
		形式	Z1	72	AT *			キーキ	部寸法		タップ寸法	
			۷1	22	AIT	L	QK	b	h	t1	m	1
	1/5	形R88G-VRXF05B200CJ	M4	M5	M4	12	16	4	4	2.5	M5	10
200W	1/9	形R88G-VRXF09C200CJ	M4	М6	M5	20	22	6	6	3.5	М6	12
20000	1/15	形R88G-VRXF15C200CJ	M4	M6	M5	20	22	6	6	3.5	M6	12
	1/25	形R88G-VRXF25C200CJ	M4	M6	M5	20	22	6	6	3.5	M6	12
	1/5	形R88G-VRXF05C400CJ	M4	М6	M5	20	22	6	6	3.5	М6	12
400W	1/9	形R88G-VRXF09C400CJ	M4	M6	M5	20	22	6	6	3.5	M6	12
40000	1/15	形R88G-VRXF15C400CJ	M4	M6	M5	20	22	6	6	3.5	M6	12
	1/25	形R88G-VRXF25C400CJ	M4	М6	M5	20	22	6	6	3.5	М6	12
	1/5	形R88G-VRXF05C750CJ	M5	M6	М6	20	22	6	6	3.5	M6	12
750W	1/9	形R88G-VRXF09D750CJ	M5	M8	М6	20	30	8	7	4	M8	16
(200V)	1/15	形R88G-VRXF15D750CJ	M5	M8	М6	20	30	8	7	4	M8	16
	1/25	形R88G-VRXF25D750CJ	M5	M8	М6	20	30	8	7	4	M8	16

- *セットボルトのことです。 注1. 標準の軸形状はキー・タップ付きとなります。 2. モータ軸挿入部の径は、対応するモータの軸径と同様です。 3. キー付きモータには使用できません。

 - 4. 本書記載の外形寸法図は主要寸法を表すものであり、製品の詳細な形状を示すものではありません。

外形図

ME	MO
	<u>-</u>

ご注文の手引き

サーボドライバ EtherCAT通信内蔵タイプ 54 サーボモータ 55 減速機 55 ACサーボモータ機種早見表 56 種類/標準価格 56 ACサーボドライバ EtherCAT通信内蔵タイプ 安全機能対応 56 ACサーボモータ 安全機能対応 57 減速機 バックラッシュ 3分以内/15分以内 58 ケーブルおよび周辺機器 59
減速機55ACサーボモータ機種早見表56種類/標準価格56ACサーボドライバ EtherCAT通信内蔵タイプ 安全機能対応56ACサーボモータ 安全機能対応57減速機 バックラッシュ 3分以内/15分以内58ケーブルおよび周辺機器59
ACサーボモータ機種早見表56種類/標準価格56ACサーボドライバ EtherCAT通信内蔵タイプ 安全機能対応56ACサーボモータ 安全機能対応57減速機 バックラッシュ 3分以内/15分以内58ケーブルおよび周辺機器59
種類/標準価格56ACサーボドライバ EtherCAT通信内蔵タイプ 安全機能対応56ACサーボモータ 安全機能対応57減速機 バックラッシュ 3分以内/15分以内58ケーブルおよび周辺機器59
ACサーボドライバ EtherCAT通信内蔵タイプ 安全機能対応
ACサーボモータ 安全機能対応57 減速機 バックラッシュ 3分以内/15分以内58 ケーブルおよび周辺機器
減速機 バックラッシュ 3分以内/15分以内58 ケーブルおよび周辺機器59
ケーブルおよび周辺機器59
ソフトウエア 63
7 7 1 7 2 7
組み合わせ表6公
ケーブル接続構成65
関連マニュアル68
モータ選定ツールのご紹介69

形式基準

サーボドライバ EtherCAT通信内蔵タイプ

形R88D-1S AN 02 H -ECT

1

2

3 4

番号	項目	記号	仕様
1	1Sサーボシステム	サーボド	ライバ
(2)	サーボドライバタ	N	Standard/通信タイプ *
(2)	イプ	AN	Advance/通信タイプ
		02	200W
		04	400W
		08	750W
3	適用サーボモータ 定格出力	10	1kW
	ZIBH77	15	1.5kW
		20	2kW
		30	3kW
•		Н	AC200V
4	電源電圧	F	AC400V
(5)	通信タイプ	ECT	EtherCAT通信タイプ

^{*1}SシリーズStandard/通信タイプについては、「ACサーボシステム 1Sシリーズカタログ(カタログ番号: SBCE-082)」を参照してください。

サーボモータ

形R88M-1 AM 200 30 T -BOS2

1

2

3

4 5

6

番号	項目	記号	仕様
1	1Sサーボシステム	サーボモ・	ー タ
		L	Standard/低慣性タイプ *
(<u>2</u>)	サーボモータ	М	Standard/中慣性タイプ *
(2)	タイプ	AL	Advance/低慣性タイプ
		AM	Advance/中慣性タイプ
		200	200W
		400	400W
		750	750W
		1K0	1kW
3	定格出力	1K5	1.5kW
		2K0	2kW
		2K6	2.6kW
		2K7	2.7kW
		3K0	3kW
(4)	定格回転数	15	1500r/min
4)	上恰凹虹 数	30	3000r/min
	サーボドライバ	Т	AC200V 絶対値 エンコーダ
(5)	主電源電圧および エンコーダタイプ	С	AC400V 絶対値 エンコーダ
	オプション		
	ブルーキ	なし	ブレーキなし
	ブレーキ	В	DC24V ブレーキ付き
6	オイルシールキー、タップ	なし	オイルシールなし
		0	オイルシール付き
		なし	ストレート軸
		S2	キー、タップ付き

^{*1}Sシリーズ Standard / 低慣性タイプ、Standard / 中慣性タイプについては、「ACサーボシステム 1Sシリーズカタログ (カタログ番号:SBCE-082)」を参照してください。

減速機

バックラッシュ 3分以内

形R88G-HPG 32A 11 2K0 S B J

4)

番号	項目	記号	仕様
1	サーボモータ用減速	機 バッ	クラッシュ 3分以内
		14A	□60
		20A	□90
2	フランジ枠番	32A	□120
		50A	□170
		65A	□230
		05	1/5
		11	1/11
		20	1/20
3	減速比	21	1/21
		25	1/25
		33	1/33
		45	1/45
		200	200W
		400	400W
		600	600W
		750	750W
4	適用サーボモータ 定格出力 *	900	900W
		1K5	1.5kW
		2K0	2kW
		3K0	3kW
		5K0	5kW
		なし	3000r/minモータ
(5)	サーボモータ タイプ *	S	2000r/minモータ
		Т	1000r/minモータ
6	バックラッシュ	В	バックラッシュ 3分以内
(7)	オプション類	なし	ストレート軸
		J	キー、タップ付き た、代表的な適用サーボモータの仕様に

本表記は、本書記載外の形式も含めた、代表的な適用サーボモータの仕様に 基づきます。 選定の際は、減速機とサーボモータの組み合わせ表をご確認ください。

バックラッシュ 15分以内

形R88G-VRXF 05 B 200 C J

番号	項目	記号	仕様
1	サーボモータ用減速	機 バック	7ラッシュ 15分以内
		05	1/5
2	減速比.	09	1/9
Œ)	//炎/杰上し	15	1/15
		25	1/25
		В	□52
3	フランジ枠番	С	□78
		D	□98
		200	200W
4	適用サーボモータ 定格出力	400	400W
	ZIIII//	750	750W
(5)	バックラッシュ	С	バックラッシュ 15分以内
6	オプション類	J	キー、タップ付き

ACサーボモータ機種早見表

形R88M-1							
	2	3	4	<u>(5)</u>	6	7	8

2	3	4		(5)		(6	(7	9	(8	3)	
				₹-	- タの電源(士様						
タイプ	定格出力	回転数	基本形式	ABS	ABS	ABS	ブレ	-+	オイル	シール	軸升	沙状
917	上恰 出刀	凹粒数		400	200	100						
				С	Т	S	なし	В	なし	0	なし	S2
	200W		形R88M-1AM20030		0		0	0	0	0	0	0
AM	400W		形R88M-1AM40030		0		0	0	0	0	0	0
	750W		形R88M-1AM75030		0		0	0	0	0	0	0
	750W		形R88M-1AL75030	0			0	0	0	0	0	0
	1kW	3000r/min	形R88M-1AL1K030	0	0		0	0	0	0	0	0
AL	1.5kW		形R88M-1AL1K530	0	0		0	0	0	0	0	0
AL	2kW		形R88M-1AL2K030	0	0		0	0	0	0	0	0
	2.6kW		形R88M-1AL2K630		0		0	0	0	0	0	0
	3kW		形R88M-1AL3K030	0			0	0	0	0	0	0
	1.5kW		形R88M-1AM1K515	0	0		0	0	0	0	0	0
AM	2.7kW	1500r/min	形R88M-1AM2K715		0		0	0	0	0	0	0
	3kW		形R88M-1AM3K015	0			0	0	0	0	0	0
AM: 中慣性 (ミドルイナーシャ) AL: 低慣性 (ローイナーシャ)	200 : 200W 1K0 : 1kW 3K0 : 3kW	15: 1500r/min 30: 3000r/min		T: AC20	00V(絶対値 0V(絶対値 0V(絶対値	ABS/INC	なし: ブレー [#] B: DC24V ブレーキ		なオなOオ付 しイし: イき		なし: ストレー S2: キー・タ	- ト軸

種類/標準価格

ACサーボドライバ EtherCAT通信内蔵タイプ 安全機能対応

電源電圧	定格出力	形式	標準価格(¥)
	200W	形R88D-1SAN02H-ECT	205,000
単相/三相AC200V	400W	形R88D-1SAN04H-ECT	210,000
平伯/ 三伯AU200V	750W	形R88D-1SAN08H-ECT	280,000
	1.5kW	形R88D-1SAN15H-ECT	445,000
	1kW	形R88D-1SAN10H-ECT	425,000
三相AC200V	2kW	形R88D-1SAN20H-ECT	475,000
	3kW	形R88D-1SAN30H-ECT	500,000
	1kW	形R88D-1SAN10F-ECT	500,000
三相AC400V	1.5kW	形R88D-1SAN15F-ECT	530,000
_1gAC400V	2kW	形R88D-1SAN20F-ECT	555,000
	3kW	形R88D-1SAN30F-ECT	605,000

ACサーボモータ 安全機能対応

●3000r/min モータ

				形式	戈				
	仕様		オイルシールなし						
			ストレート軸	標準価格(¥)	キー、タップ付き	標準価格(¥)			
		200W	形R88M-1AM20030T	112,000	形R88M-1AM20030T-S2	112,000			
		400W	形R88M-1AM40030T	132,000	形R88M-1AM40030T-S2	132,000			
		750W	形R88M-1AM75030T	158,000	形R88M-1AM75030T-S2	158,000			
	AC200V	1kW	形R88M-1AL1K030T	210,000	形R88M-1AL1K030T-S2	210,000			
		1.5kW	形R88M-1AL1K530T	255,000	形R88M-1AL1K530T-S2	255,000			
ブレーキなし		2kW	形R88M-1AL2K030T	300,000	形R88M-1AL2K030T-S2	300,000			
プレーヤなし		2.6kW	形R88M-1AL2K630T	345,000	形R88M-1AL2K630T-S2	345,000			
		750W	形R88M-1AL75030C	190,000	形R88M-1AL75030C-S2	190,000			
		1kW	形R88M-1AL1K030C	255,000	形R88M-1AL1K030C-S2	255,000			
	AC400V	1.5kW	形R88M-1AL1K530C	300,000	形R88M-1AL1K530C-S2	300,000			
		2kW	形R88M-1AL2K030C	365,000	形R88M-1AL2K030C-S2	365,000			
		3kW	形R88M-1AL3K030C	415,000	形R88M-1AL3K030C-S2	415,000			
		200W	形R88M-1AM20030T-B	171,000	形R88M-1AM20030T-BS2	171,000			
		400W	形R88M-1AM40030T-B	196,000	形R88M-1AM40030T-BS2	196,000			
		750W	形R88M-1AM75030T-B	220,000	形R88M-1AM75030T-BS2	220,000			
	AC200V	1kW	形R88M-1AL1K030T-B	295,000	形R88M-1AL1K030T-BS2	295,000			
		1.5kW	形R88M-1AL1K530T-B	335,000	形R88M-1AL1K530T-BS2	335,000			
ブレーキ付き		2kW	形R88M-1AL2K030T-B	395,000	形R88M-1AL2K030T-BS2	395,000			
ノレーキ付き		2.6kW	形R88M-1AL2K630T-B	435,000	形R88M-1AL2K630T-BS2	435,000			
		750W	形R88M-1AL75030C-B	270,000	形R88M-1AL75030C-BS2	270,000			
		1kW	形R88M-1AL1K030C-B	350,000	形R88M-1AL1K030C-BS2	350,000			
	AC400V	1.5kW	形R88M-1AL1K530C-B	400,000	形R88M-1AL1K530C-BS2	400,000			
		2kW	形R88M-1AL2K030C-B	470,000	形R88M-1AL2K030C-BS2	470,000			
		3kW	形R88M-1AL3K030C-B	520,000	形R88M-1AL3K030C-BS2	520,000			

		形式							
	仕様		オイルシール付き						
			ストレート軸	標準価格(¥)	キー、タップ付き	標準価格(¥)			
		200W	形R88M-1AM20030T-0	114,000	形R88M-1AM20030T-0S2	114,000			
		400W	形R88M-1AM40030T-0	134,000	形R88M-1AM40030T-0S2	134,000			
		750W	形R88M-1AM75030T-0	161,000	形R88M-1AM75030T-0S2	161,000			
	AC200V	1kW	形R88M-1AL1K030T-0	215,000	形R88M-1AL1K030T-OS2	215,000			
		1.5kW	形R88M-1AL1K530T-0	255,000	形R88M-1AL1K530T-OS2	255,000			
ブレーキなし		2kW	形R88M-1AL2K030T-0	305,000	形R88M-1AL2K030T-OS2	305,000			
プレーヤなし		2.6kW	形R88M-1AL2K630T-0	345,000	形R88M-1AL2K630T-OS2	345,000			
		750W	形R88M-1AL75030C-0	194,000	形R88M-1AL75030C-OS2	194,000			
		1kW	形R88M-1AL1K030C-0	255,000	形R88M-1AL1K030C-OS2	255,000			
	AC400V	1.5kW	形R88M-1AL1K530C-0	305,000	形R88M-1AL1K530C-OS2	305,000			
		2kW	形R88M-1AL2K030C-0	370,000	形R88M-1AL2K030C-OS2	370,000			
		3kW	形R88M-1AL3K030C-0	415,000	形R88M-1AL3K030C-OS2	415,000			
		200W	形R88M-1AM20030T-B0	174,000	形R88M-1AM20030T-B0S2	174,000			
		400W	形R88M-1AM40030T-B0	199,000	形R88M-1AM40030T-B0S2	199,000			
		750W	形R88M-1AM75030T-B0	225,000	形R88M-1AM75030T-B0S2	225,000			
	AC200V	1kW	形R88M-1AL1K030T-B0	300,000	形R88M-1AL1K030T-B0S2	300,000			
		1.5kW	形R88M-1AL1K530T-B0	340,000	形R88M-1AL1K530T-B0S2	340,000			
ブレーキ付き		2kW	形R88M-1AL2K030T-B0	395,000	形R88M-1AL2K030T-B0S2	395,000			
ノレーキ刊さ		2.6kW	形R88M-1AL2K630T-B0	440,000	形R88M-1AL2K630T-B0S2	440,000			
		750W	形R88M-1AL75030C-BO	270,000	形R88M-1AL75030C-BOS2	270,000			
		1kW	形R88M-1AL1K030C-B0	355,000	形R88M-1AL1K030C-B0S2	355,000			
	AC400V	1.5kW	形R88M-1AL1K530C-B0	405,000	形R88M-1AL1K530C-B0S2	405,000			
		2kW	形R88M-1AL2K030C-B0	475,000	形R88M-1AL2K030C-B0S2	475,000			
		3kW	形R88M-1AL3K030C-B0	520,000	形R88M-1AL3K030C-B0S2	520,000			

● 1500r/min モータ

		形式						
仕様				オイルシ	ールなし			
			ストレート軸	標準価格(¥)	キー、タップ付き	標準価格(¥)		
	400001/	1.5kW	形R88M-1AM1K515T	220,000	形R88M-1AM1K515T-S2	220,000		
ブレーキなし	AC200V	AC200V	AC200V	2.7kW	形R88M-1AM2K715T	315,000	形R88M-1AM2K715T-S2	315,000
プレーキなし	AC400V	1.5kW	形R88M-1AM1K515C	270,000	形R88M-1AM1K515C-S2	270,000		
	AC400V	3kW	形R88M-1AM3K015C	380,000	形R88M-1AM3K015C-S2	380,000		
	AC200V	1.5kW	形R88M-1AM1K515T-B	295,000	形R88M-1AM1K515T-BS2	295,000		
ブレーキ付き	AC200V	2.7kW	形R88M-1AM2K715T-B	395,000	形R88M-1AM2K715T-BS2	395,000		
ノレーギ刊さ	AC400V	1.5kW	形R88M-1AM1K515C-B	350,000	形R88M-1AM1K515C-BS2	350,000		
	AC400V	3kW	形R88M-1AM3K015C-B	470,000	形R88M-1AM3K015C-BS2	470,000		

仕様			形式						
				オイルシール付き					
			ストレート軸	標準価格(¥)	キー、タップ付き	標準価格(¥)			
	AC200V	1.5kW	形R88M-1AM1K515T-0	225,000	形R88M-1AM1K515T-OS2	225,000			
ブレーキなし	ACZUUV	AC200V	2.7kW	形R88M-1AM2K715T-0	320,000	形R88M-1AM2K715T-OS2	320,000		
プレーキなし	AC400V	1.5kW	形R88M-1AM1K515C-0	270,000	形R88M-1AM1K515C-OS2	270,000			
	AC400V	3kW	形R88M-1AM3K015C-0	380,000	形R88M-1AM3K015C-OS2	380,000			
	AC200V	1.5kW	形R88M-1AM1K515T-B0	300,000	形R88M-1AM1K515T-BOS2	300,000			
ブレーキ付き		2.7kW	形R88M-1AM2K715T-B0	395,000	形R88M-1AM2K715T-BOS2	395,000			
ノレーギ刊さ	AC400V	1.5kW	形R88M-1AM1K515C-BO	355,000	形R88M-1AM1K515C-BOS2	355,000			
AC400	AC400V	3kW	形R88M-1AM3K015C-B0	475,000	形R88M-1AM3K015C-B0S2	475,000			

減速機 バックラッシュ 3分以内

●3,000r/minモータ用

サーボモータ 定格出力	減速比	形式(ストレート軸) *	標準価格(¥)
	1/5	形R88G-HPG14A05200B□	101,000
	1/11	形R88G-HPG14A11200B□	121,000
200W	1/21	形R88G-HPG20A21200B□	141,000
	1/33	形R88G-HPG20A33200B□	141,000
	1/45	形R88G-HPG20A45200B□	141,000
	1/5	形R88G-HPG14A05400B□	101,000
	1/11	形R88G-HPG20A11400B□	141,000
400W	1/21	形R88G-HPG20A21400B□	141,000
	1/33	形R88G-HPG32A33400B□	182,000
	1/45	形R88G-HPG32A45400B□	186,000
	1/5	形R88G-HPG20A05750B□	124,000
	1/11	形R88G-HPG20A11750B□	141,000
750W (200V)	1/21	形R88G-HPG32A21750B□	182,000
(2001)	1/33	形R88G-HPG32A33750B□	182,000
	1/45	形R88G-HPG32A45750B□	186,000
	1/5	形R88G-HPG32A052K0B□	167,000
750W	1/11	形R88G-HPG32A112K0B□	182,000
(400V)	1/21	形R88G-HPG32A211K5B□	182,000
	1/33	形R88G-HPG32A33600SB□	182,000

サーボモータ 定格出力	減速比	形式(ストレート軸) *	標準価格(¥)
	1/5	形R88G-HPG32A052K0B□	167,000
1kW	1/11	形R88G-HPG32A112K0B□	182,000
	1/21	形R88G-HPG32A211K5B□	182,000
	1/5	形R88G-HPG32A052K0B□	167,000
1.5kW	1/11	形R88G-HPG32A112K0B□	182,000
	1/21	形R88G-HPG32A211K5B□	182,000
OLAM	1/5	形R88G-HPG32A052K0B□	167,000
2kW	1/11	形R88G-HPG32A112K0B□	182,000
2.6kW (200V) 3kW (400V)	1/5	形R88G-HPG32A053K0B□	167,000

^{*}標準の軸形状はストレート軸となります。 減速機形式の後ろの□ に「J」を付けると、キーとタップ付きになります。 例: 形R88G-HPG11B05100BJ

● 1,500r/minモータ用

サーボモータ 定格出力	減速比	形式(ストレート軸)*	標準価格(¥)
	1/5	形R88G-HPG32A053K0B□	167,000
1.5kW	1/11	形R88G-HPG32A112K0SB□	182,000
1.3800	1/21	形R88G-HPG50A21900TB□	425,000
	1/33	形R88G-HPG50A33900TB□	430,000
2.7kW	1/5	形R88G-HPG50A055K0SB□	475,000
(200V)	1/11	形R88G-HPG50A115K0SB□	510,000
3kW (400V)	1/20	形R88G-HPG65A205K0SB□	1,060,000
(4007)	1/25	形R88G-HPG65A255K0SB□	1,060,000

*標準の軸形状はストレート軸となります。 減速機形式の後ろの□に「J」を付けると、キーとタップ付きになります。 例: 形R88G-HPG11B05100BJ

減速機 バックラッシュ 15分以内

●3,000r/minモータ用

サーボモータ 定格出力	減速比	形式	標準価格(¥)
	1/5	形R88G-VRXF05B200CJ	46,000
200W	1/9	形R88G-VRXF09C200CJ	59,000
200W	1/15	形R88G-VRXF15C200CJ	80,000
	1/25	形R88G-VRXF25C200CJ	86,000
	1/5	形R88G-VRXF05C400CJ	59,000
400W	1/9	形R88G-VRXF09C400CJ	59,000
4000	1/15	形R88G-VRXF15C400CJ	80,000
1/25		形R88G-VRXF25C400CJ	86,000
	1/5	形R88G-VRXF05C750CJ	63,500
750W	1/9	形R88G-VRXF09D750CJ	85,000
(200V)	1/15	形R88G-VRXF15D750CJ	93,000
	1/25	形R88G-VRXF25D750CJ	104,000

ケーブルおよび周辺機器

一体型ケーブル(屈曲ケーブル)

	第四井 ギエ カ		ブレーキ線なし	,	ブレーキ線付き	
	適用サーボモータ		形式	標準価格(¥)	形式	標準価格(¥)
,		3m	形R88A-CX1A003SF	37,000	形R88A-CX1A003BF	49,500
		5m	形R88A-CX1A005SF	49,500	形R88A-CX1A005BF	67,000
200V	3000r/min モータ 200W、400W、750W	10m	形R88A-CX1A010SF	77,500	形R88A-CX1A010BF	103,000
	200W. 400W. 730W	15m	形R88A-CX1A015SF	87,500	形R88A-CX1A015BF	121,000
		20m	形R88A-CX1A020SF	117,000	形R88A-CX1A020BF	157,000
		3m	形R88A-CX1B003SF	53,000	形R88A-CX1B003BF	71,500
		5m	形R88A-CX1B005SF	68,000	形R88A-CX1B005BF	90,000
200V	3000r/min モータ 1kW	10m	形R88A-CX1B010SF	106,000	形R88A-CX1B010BF	138,000
		15m	形R88A-CX1B015SF	144,000	形R88A-CX1B015BF	187,000
		20m	形R88A-CX1B020SF	181,000	形R88A-CX1B020BF	235,000
	200V	3m	形R88A-CX1C003SF	53,000	形R88A-CX1C003BF	75,000
	, 4007	5m	形R88A-CX1C005SF	68,000	形R88A-CX1C005BF	94,500
200 V 400 V		10m	形R88A-CX1C010SF	106,000	形R88A-CX1C010BF	147,000
	3000r/min モータ 750W、1kW、1.5kW、2kW、3kW	15m	形R88A-CX1C015SF	144,000	形R88A-CX1C015BF	198,000
1500r/min モータ 1.5kW、3kW	20m	形R88A-CX1C020SF	181,000	形R88A-CX1C020BF	250,000	
		3m	形R88A-CX1D003SF	75,000	形R88A-CX1D003BF	113,000
		5m	形R88A-CX1D005SF	98,000	形R88A-CX1D005BF	143,000
200 V	3000r/min モータ 2kW、2.6kW 1500r/min モータ 2.7kW	10m	形R88A-CX1D010SF	160,000	形R88A-CX1D010BF	225,000
	1000//iiii C y Z./KW	15m	形R88A-CX1D015SF	220,000	形R88A-CX1D015BF	305,000
		20m	形R88A-CX1D020SF	280,000	形R88A-CX1D020BF	380,000

延長ケーブル(屈曲ケーブル) ブレーキ線付き、ブレーキ線なしに関わらず一体型ケーブルの延長には、次の延長ケーブルを使用します。 また形R88A-CX1C□□□□Fの一体型ケーブルの延長には、形R88A-CX1BE□□BFを使用します。

	適用サーボモータ	形式	標準価格(¥)	
200V	3000r/min モータ 200W、400W、750W		形R88A-CX1AE10BF	111,000
200V			形R88A-CX1AE20BF	165,000
200 V	200V 3000r/min モータ 1kW、1.5kW 1500r/min モータ 1.5kW	10m	形R88A-CX1BE10BF	153,000
400 V	400V 3000r/min モータ 750W、1kW、1.5kW、2kW、3kW 1500r/min モータ 1.5kW、3kW	20m	形R88A-CX1BE20BF	250,000
200 V	3000r/min モータ 2kW、2.6kW	10m	形R88A-CX1DE10BF	245,000
200 V	1500r/min モータ 2.7kW	20m	形R88A-CX1DE20BF	400,000

59

EtherCAT通信ケーブル 推奨品

EtherCATではカテゴリ5以上のSTPケーブル(アルミテープと編組の二重遮へいシールド付ツイストペアケーブル)を使用しま す。ストレート配線で使用します。

コネクタ付ケーブル

商品名称	形状	メーカ	ケーブル長(m)	形式	標準価格(¥)
			0.3	形XS6W-6PUR8SS30CM-YF	3,300
両側コネクタ付ケーブル(RJ45/RJ45)			0.5	形XS6W-6PUR8SS50CM-YF	3,550
RJ45コネクタ小型タイプ *1		- / - \ # - * ^ + 1	1	形XS6W-6PUR8SS100CM-YF	3,600
サイズ・線心数(対数): AWG26 × 4P ケーブルシース材質:PUR		オムロン株式会社	2	形XS6W-6PUR8SS200CM-YF	3,950
ケーブルシース材質・PUR ケーブル色:黄色 *2	A.		3	形XS6W-6PUR8SS300CM-YF	4,300
			5	形XS6W-6PUR8SS500CM-YF	5,050
			0.3	形XS5W-T421-AMD-K	6,700
エ伽ーシャケル ゴル/D145/D145)	-		0.5	形XS5W-T421-BMD-K	6,800
両側コネクタ付ケーブル(RJ45/RJ45) RJ45コネクタ堅牢タイプ * 1	100	- / - \ # - * ^ + 1	1	形XS5W-T421-CMD-K	7,150
サイズ・線心数 (対数): AWG22 × 2P ケーブル色:ライトブルー	**0	オムロン株式会社	2	形XS5W-T421-DMD-K	7,900
			5	形XS5W-T421-GMD-K	10,100
			10	形XS5W-T421-JMD-K	13,400
°= 6∓/11 ¬ > 2 2 4 4 5 1 1	-0	オムロン株式会社	0.5	形XS5W-T421-BMC-SS	7,300
プラグ両側コネクタ付ケーブル (M12ストレート/RJ45)			1	形XS5W-T421-CMC-SS	7,800
シールド強化コネクタケーブル仕様 *3			2	形XS5W-T421-DMC-SS	8,900
M12スマートクリックコネクタタイプ RJ45コネクタ堅牢タイプ			3	形XS5W-T421-EMC-SS	9,800
サイズ・線心数 (対数): AWG22 × 2P ケーブル色:黒色			5	形XS5W-T421-GMC-SS	11,800
			10	形XS5W-T421-JMC-SS	16,500
			0.25	3RHS4-1100-0.25M	
T(0) - > 5 5 / 1 /		スリーエム ジャパン	0.5	3RHS4-1100-0.5M	
両側コネクタ付ケーブル(RJ45/RJ45) RJ45コネクタ小型堅牢タイプ * 4 サイズ・線心数 (対数): AWG22 × 2P		株式会社	1	3RHS4-1100-1M	価格については
	<i>'</i>	カスタマーコール	2	3RHS4-1100-2M	お問合せ先にお尋ねください
ケーブル色:黄色		センター TEL:0570-012-321	5	3RHS4-1100-5M	
			10	3RHS4-1100-10M	1

^{*1.}小型タイプのケーブルの長さは0.2、0.3、0.5、1、1.5、2、3、5、7.5、10、15、20mをご用意しております。 堅牢タイプのケーブルの長さは、0.3、0.5、1、2、3、5、10、15mをご用意しております。 詳細は「産業用イーサネットコネクタカタログ」(カタログ番号: CDJC-006)をご参照ください。 *2.ケーブルの色は、緑色と青色もご用意しております。 *3.詳細は、当社営業担当者にお問い合わせください。 *4.ケーブルの長さは0.25~100mをご用意しております。お問い合わせ先にお尋ねください。

ケーブル/コネクタ サイズ・線心数(対数): AWG24 x 4P

部品名	形状	メーカ	形式	標準価格(¥)	お問合せ先
ケーブル	-		KETH-SB*	価格については	倉茂電工株式会社 TEL: 03-5644-7601 TEL: 06-6231-8151
	_	JMACS株式会社	IETP-SB*	お問合せ先に	オムロンエフエーストア株式会社 TEL: 0120-024-324
RJ45コネクタ	_	パンドウイット コーポレーション	MPS588-C*		パンドウイットコーポレーション 日本支社

^{*}本ケーブルおよびコネクタは、上記の組み合わせでのご使用を推奨します。

サイズ・線心数(対数): AWG22 x 2P

部品名	形状	メーカ	形式	標準価格(¥)	お問合せ先	
ケーブル	_	倉茂電工株式会社	KETH-PSB-OMR * 1	価格については お問合せ先に	倉茂電工株式会社 TEL: 03-5644-7601 TEL: 06-6231-8151	
	_	-JMACS株式会社PNET/B*1お尋ねください		オムロンエフエーストア株式会社 TEL: 0120-024-324		
RJ45組立式 コネクタ		オムロン株式会社	形XS6G-T421-1 * 1	2,850	オムロン株式会社 カスタマサポートセンタ TEL:0120-919-066	
ケーブル	_	スリーエム ジャパン	79100-IE4P-F1-YE*2	価格については	スリーエム ジャパン株式会社	
RJ45組立式 コネクタ		株式会社	3R104-1110-000AM*2	お問合せ先に お尋ねください	カスタマーコールセンター TEL: 0570-012-321	

^{*1.}本ケーブルおよびコネクタは、上記の組み合わせでのご使用を推奨します。 *2.本ケーブルおよびコネクタは、上記の組み合わせでのご使用を推奨します。

サーボドライバ側コネクタ

サーボドライバ側コネクタは、ドライバ形R88D-1SAN□-ECTに各1つずつ付属しています。(エンコーダコネクタを除く) またメンテナンス用としても個別にご購入いただけます。

名称および適用	形式	標準価格(¥)
主回路コネクタ(CNA) * 1 形R88D-1SAN02H-ECT/ -1SAN04H-ECT/ -1SAN08H-ECT/-1SAN10H-ECT用	形R88A-CN102P *4	8,050
主回路コネクタA(CNA)*2 形R88D-1SAN15H-ECT/-1SAN20H-ECT/-1SAN30H-ECT/-1SAN10F-ECT/ -1SAN15F-ECT/-1SAN20F-ECT/-1SAN30F-ECT用	形R88A-CN103P *4	10,500
主回路コネクタB(CNB) *2 形R88D-1SAN15H-ECT/ -1SAN20H-ECT/ -1SAN30H-ECT/-1SAN10F-ECT/ -1SAN15F-ECT/ -1SAN20F-ECT/ -1SAN30F-ECT用	形R88A-CN104P *4	9,750
モータ接続コネクタ(CNC) 形R88D-1SAN02H-ECT/ -1SAN04H-ECT/ -1SAN08H-ECT/-1SAN10H-ECT用	形R88A-CN101A *4	5,300
モータ接続コネクタ(CNC) 形R88D-1SAN15H-ECT/ -1SAN20H-ECT/ -1SAN30H-ECT/-1SAN10F-ECT/ -1SAN15F-ECT/ -1SAN20F-ECT/ -1SAN30F-ECT用	形R88A-CN102A *4	9,200
制御電源コネクタ(CND) 形 R88D-1SAN15H-ECT/ -1SAN20H-ECT/ -1SAN30H-ECT/-1SAN10F-ECT/ -1SAN15F-ECT/ -1SAN20F-ECT/ -1SAN30F-ECT用	形R88A-CN101P *4	5,750
制御入出力コネクタ(CN1)	形R88A-CN102C	11,700
エンコーダコネクタ(CN2)	形R88A-CN101R	6,250
ブレーキインターロックコネクタ(CN12)	形R88A-CN101B	6,250
セーフティ信号コネクタ(CN14) *3	形R88A-CN101S	11,700
セーフブレーキコントロールコネクタ(CN15)	形R88A-CN102S	6,250

^{*1.}コネクタには短絡線2本が接続されています。

^{*2.} コネクタには短絡線1本が接続されています。

^{*3.}コネクタには短点が発統されており、誤挿入防止ピンが1個挿入されています。 *4.オープナ1本が付属しています。

シールドクランプブラケット

シールドクランプは、一体型ケーブルを固定し、一体型ケーブルのシールド線とサーボドライバのFGを接続するために使用します。シールドクランプブラケットとシールドクランププレートから構成されています。

名称	適用するドライバ/一体型ケーブル形式		形式	標準価格(¥)	
	形R88D-1SAN02H-ECT 形R88D-1SAN04H-ECT 形R88D-1SAN08H-ECT	形 R88A-CX1A□□□□F			
	形R88D-1SAN10H-ECT	形 R88A-CX1B□□□□F			
シールドクランプ ブラケットS	形R88D-1SAN15H-ECT 形R88D-1SAN10F-ECT 形R88D-1SAN15F-ECT 形R88D-1SAN20F-ECT 形R88D-1SAN30F-ECT	₩R88A-CX1C□□□□F	形R88A-SC10CX	16,100	
	形R88D-1SAN20H-ECT 形R88D-1SAN30H-ECT	形R88A-CX1D□□□□F			

⁻ 注. シールドクランプブラケットは、適用一体型ケーブルに1 つ付属しています。 延長ケーブルにはシールドクランプは付属していません。

外部回生抵抗器

適用サーボドライバ	仕様	形式	標準価格(¥)
形R88D-1SAN02H-ECT	回生処理能力 24W 25Ω	形R88A-RR12025	3,700
形R88D-1SAN30H-ECT	回生処理能力 60W 8Ω	形R88A-RR30008	12,500
形R88D-1SAN20H-ECT	回生処理能力 60W 10Ω	形R88A-RR30010	12,500
形R88D-1SAN15H-ECT	回生処理能力 60W 14Ω	形R88A-RR30014	12,500
形R88D-1SAN08H-ECT/-1SAN10H-ECT/-1SAN20F-ECT *	回生処理能力 60W 20Ω	形R88A-RR30020	12,500
形R88D-1SAN02H-ECT/-1SAN04H-ECT	回生処理能力 60W 25Ω	形R88A-RR30025	12,500
形R88D-1SAN30F-ECT	回生処理能力 60W 32Ω	形R88A-RR30032	12,500
形R88D-1SAN10F-ECT *	回生処理能力 60W 33Ω	形R88A-RR30033	12,500
形R88D-1SAN15F-ECT	回生処理能力 60W 54Ω	形R88A-RR30054	12,500

^{*2}つを直列接続にして使用してください。

外部回生抵抗ユニット

適用サーボドライバ	仕様	形式	標準価格(¥)
形R88D-1SAN30H-ECT	回生処理能力 640W 8Ω	形R88A-RR1K608	71,000
形R88D-1SAN20H-ECT	回生処理能力 640W 10Ω	形R88A-RR1K610	71,000
形R88D-1SAN15H-ECT	回生処理能力 640W 14Ω	形R88A-RR1K614	71,000
形R88D-1SAN08H-ECT/-1SAN10H-ECT/-1SAN20F-ECT *	回生処理能力 640W 20Ω	形R88A-RR1K620	71,000
形R88D-1SAN30F-ECT	回生処理能力 640W 32Ω	形R88A-RR1K632	71,000
形R88D-1SAN20F-ECT	回生処理能力 640W 40Ω	形R88A-RR1K640	71,000
形R88D-1SAN15F-ECT	回生処理能力 640W 54Ω	形R88A-RR1K654	71,000
形R88D-1SAN10F-ECT	回生処理能力 640W 66Ω	形R88A-RR1K666	71,000

^{*2}つを直列接続にして使用してください。

DCリアクトル

適用サーボドライバ	形式	標準価格(¥)
形R88D-1SAN02H-ECT	形R88A-PD2002	16,100
形R88D-1SAN04H-ECT	形R88A-PD2004	17,100
形R88D-1SAN08H-ECT	形R88A-PD2007	18,600
形R88D-1SAN10H-ECT/ -1SAN15H-ECT	形R88A-PD2015	23,000
形R88D-1SAN20H-ECT	形R88A-PD2022	25,500
形R88D-1SAN30H-ECT	形R88A-PD2037	34,500
形R88D-1SAN10F-ECT/ -1SAN15F-ECT	形R88A-PD4015	22,500
形R88D-1SAN20F-ECT	形R88A-PD4022	24,500
形R88D-1SAN30F-ECT	形R88A-PD4037	36,000

ソフトウエア

オートメーションソフトウェア Sysmac Studio

NJ/NXシリーズCPUユニットおよびNYシリーズ産業用PCをはじめとするマシンオートメーションコントローラ、EtherCAT スレーブおよびHMIなどの設定、プログラミング、デバッグ、メンテナンスのための、統合開発環境を提供するソフトウェアです。

詳細につきましては、当社Webサイト(www.fa.omron.co.jp/)の商品情報、『Sysmac Studioカタログ』(カタログ番号: SBCA-122)をご参照ください。

注. 1Sシリーズ安全機能対応サーボドライバVer.1.0以降には、Sysmac Studio Ver.1.44.1以降が必要です。

ソフトウェア機能部品集

Sysmac Library

Sysmac Libraryは、NJ/NXシリーズコントローラ上で動作するソフトウェア機能部品集です。

以下URLよりダウンロードし、Sysmac Studioにインストールしてご使用ください。

http://www.fa.omron.co.jp/sysmac_library

商品名称	仕様	形式	標準価格(¥)
EtherCAT 1Sシリーズ ライブラリ	1Sシリーズ サーボドライバ EtherCAT通信内蔵タイプの絶対値エンコーダ初期化設定や、パラメータのバックアップ (読み出し)/リストア (書き込み)を、NJ/NXシリーズのユーザプログラムから行う場合に使用します。	形SYSMAC-XR011	無償

組み合わせ表

サーボドライバとモータの組み合わせ

1SシリーズサーボドライバAdvanceタイプとサーボモータの組み合わせを示します。ここに示した以外の組み合わせはできま せん。下表のサーボモータ形式末尾の-□は、軸形状、ブレーキなどのオプション形式を示します。

3000r/min サーボモータとサーボドライバの組み合わせ

主回路電源電圧	サーボモータ定格出力	サーボモータ形式	サーボドライバ形式
	200W	形R88M-1AM20030T-□	形R88D-1SAN02H-ECT
単相/三相AC200V	400W	形R88M-1AM40030T-□	形R88D-1SAN04H-ECT
平伯/ 二伯AU200V	750W	形R88M-1AM75030T-□	形R88D-1SAN08H-ECT
	1.5kW	形R88M-1AL1K530T-□	形R88D-1SAN15H-ECT
	1kW	形R88M-1AL1K030T-□	形R88D-1SAN10H-ECT
三相AC200V	2kW	形R88M-1AL2K030T-□	形R88D-1SAN20H-ECT
	2.6kW	形R88M-1AL2K630T-□	形R88D-1SAN30H-ECT
	750W	形R88M-1AL75030C-□	形R88D-1SAN10F-ECT
	1kW	形R88M-1AL1K030C-□	形R88D-1SAN10F-ECT
三相AC400V	1.5kW	形R88M-1AL1K530C-□	形R88D-1SAN15F-ECT
	2kW	形R88M-1AL2K030C-□	形R88D-1SAN20F-ECT
	3kW	形R88M-1AL3K030C-□	形R88D-1SAN30F-ECT

1500r/min サーボモータとサーボドライバの組み合わせ

主回路電源電圧	サーボモータ定格出力	サーボモータ形式	サーボドライバ形式
単相/三相AC200V	1.5kW	形R88M-1AM1K515T-□	形R88D-1SAN15H-ECT
三相AC200V	2.7kW	形R88M-1AM2K715T-□	形R88D-1SAN30H-ECT
= + 8.00.400.V	1.5kW	形R88M-1AM1K515C-□	形R88D-1SAN15F-ECT
三相AC400V	3kW	形R88M-1AM3K015C-□	形R88D-1SAN30F-ECT

サーボモータと減速機の組み合わせ

1SシリーズサーボモータAdvanceタイプと減速機の組み合わせを示します。キー、タップ付きモータ(末尾に-S2が付く形式)は、減速機と組み合わせることはできません。

バックラッシュ 3分以内

3000r/min モータと減速機の組み合わせ

減速比サーボモータ形式	1/5	1/ 11	1/21	1/ 33	1/ 45
形R88M-1AM20030□	形R88G-HPG 14A05200B□	形R88G-HPG 14A11200B□	形R88G-HPG 20A21200B□	形R88G-HPG 20A33200B□	形R88G-HPG 20A45200B□
形R88M-1AM40030□	形R88G-HPG 14A05400B□	形R88G-HPG 20A11400B□	形R88G-HPG 20A21400B□	形R88G-HPG 32A33400B□	形R88G-HPG 32A45400B□
形R88M-1AM75030□ (AC200V)	形R88G-HPG 20A05750B□	形R88G-HPG 20A11750B□	形R88G-HPG 32A21750B□	形R88G-HPG 32A33750B□	形R88G-HPG 32A45750B□
形R88M-1AL75030口 (AC400V)			形R88G-HPG 32A211K5B□	形R88G-HPG 32A33600SB□	
形R88M-1AL1K030□	形R88G-HPG 32A052K0B口	形R88G-HPG 32A112K0B口			
形R88M-1AL1K530□	32AU32KUB_	32ATTZKUB_			
形R88M-1AL2K030□					_
形R88M-1AL2K630口 (AC200V) 形R88M-1AL3K030口 (AC400V)	形R88G-HPG 32A053K0B□	_	_	_	

1500r/min モータと減速機の組み合わせ

減速比サーボモータ形式	1/5	1/ 11	1/21	1/ 25	1/ 33	1/ 45
形R88M-1AM1K515□	形R88G-HPG 32A053K0B□	形R88G-HPG 32A112K0SB□	_	形R88G-HPG 50A21900TB□	_	形R88G-HPG 50A33900TB□
形R88M-1AM2K715□ (AC200V) 形R88M-1AM3K015□ (AC400V)	形R88G-HPG 50A055K0SB□	形R88G-HPG 50A115K0SB□	形R88G-HPG 65A205K0SB□	_	形R88G-HPG 65A255K0SB□	_

バックラッシュ 15分以内

3000r/min モータと減速機の組み合わせ

減速比 サーボモータ形式	1/5	1/9	1/ 15	1/ 25
形R88M-1AM20030□	形R88G-VRXF	形R88G-VRXF	形R88G-VRXF	形R88G-VRXF
	05B200CJ	09C200CJ	15C200CJ	25C200CJ
形R88M-1AM40030□	形R88G-VRXF	形R88G-VRXF	形R88G-VRXF	形R88G-VRXF
	05C400CJ	09C400CJ	15C400CJ	25C400CJ
形R88M-1AM75030□	形R88G-VRXF	形R88G-VRXF	形R88G-VRXF	形R88G-VRXF
(AC200V)	05C750CJ	09D750CJ	15D750CJ	25D750CJ

ケーブル接続構成

サーボドライバとサーボモータを接続するためのケーブルです。ケーブルは、使用するサーボモータに合わせて選定してください。

使用上の注意

使用される国により、ケーブルに対する要求が異なります。(国が同じでも地域、敷設される場所の違いにより要求が異なる場合もあります)

そのため、各国法規に適合したケーブルについては、各審査機関へ確認するようにしてください。

ブレーキ線なしケーブル

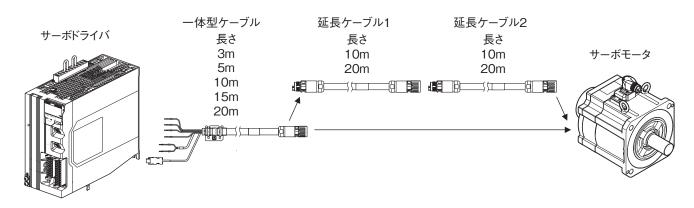
接続対象	形式		接続構成、外形寸法 (mm)	
200V: 3000r/min モータ 200W、 400W、750W	形R88A-CX1A□□□SF □内はケーブルの長さ (φ11.9mm)	ドライバ側コネクタ コネクタ形式 リセプタクル 3E206-0100KV (3M) シェルキット 3E306-3200-008 (3M)	260	モータ側コネクタ M17 Series (Phoenix Contact) コネクタ形式 1624639 コンタクト形式 動力: 1618251 エンコーダ (DSL): 1607581 エンコーダ (DSL) シールド: 1607582
200V: 3000r/min モータ 1kW	形R88A-CX1B□□□SF □内はケーブルの長さ (φ14.5mm)	ドライバ側コネクタ コネクタ形式 リセプタクル 3E206-0100KV(3M) シェルキット 3E306-3200-008(3M)	260	モータ側コネクタ M23 Series (Phoenix Contact) コネクタ形式 1621517 コンタクト形式 動力: 1621576 エンコーダ (DSL): 1621573
200V: 3000r/min Ξ - Ø 1.5kW 1500r/min Ξ - Ø 1.5kW 400V: 3000r/min Ξ - Ø 750W, 1kW, 1.5kW, 2kW, 3kW 1500r/min Ξ - Ø 1.5kW, 3kW	形R88A-CX1C□□□SF □内はケーブルの長さ (φ14.5mm)	ドライバ側コネクタ コネクタ形式 リセプタクル 3E206-0100KV(3M) シェルキット 3E306-3200-008(3M)	160	モータ側コネクタ M23 Series (Phoenix Contact) コネクタ形式 1621517 コンタクト形式 動力: 1621576 エンコーダ (DSL): 1621573
200V: 3000r/min モータ 2kW、 2.6kW 1500r/minモータ 2.7kW	形R88A-CX1D□□□SF □内はケーブルの長さ (φ14.9mm)	ドライバ側コネクタ コネクタ形式 リセプタクル 3E206-0100KV (3M) シェルキット 3E306-3200-008 (3M)	160	モータ側コネクタ M23 Series (Phoenix Contact) コネクタ形式 1621517 コンタクト形式 動力: 1621577 エンコーダ(DSL): 1621573

注: ケーブルの長さには、3m、5m、10m、15m、20mがあります。 形式の□□□は、3m:003、5m:005、10m:010のようになります。

ブレーキ線付きケーブル

接続対象	形式		接続構成、外形寸法 (mm)	
200V: 3000r/min モータ 200W、 400W、750W	形R88A-CX1A□□□BF □内はケーブルの長さ (φ11.8mm)	ドライバ側コネクタ コネクタ形式 リセプタクル 3E206-0100KV(3M) シェルキット 3E306-3200-008(3M)	260	モータ側コネクタ M17 Series (Phoenix Contact) コネクタ形式 1624639 コンタクト形式 動力: 1618251 ブレーキ: 1607582 エンコーダ (DSL): 1607581 エンコーダ (DSL) シールド: 1607582
200V: 3000r/min モータ 1kW	形R88A-CX1B□□□BF □内はケーブルの長さ (φ 14.5mm)	ドライバ側コネクタ コネクタ形式 リセプタクル 3E206-0100KV(3M) シェルキット 3E306-3200-008(3M)	260	モータ側コネクタ M23 Series (Phoenix Contact) コネクタ形式 1621517 コンタクト形式 動力: 1621576 ブレーキ: 1618251 エンコーダ (DSL): 1621573
200V: 3000r/min Ξ -	形R88A-CX1C□□□BF □内はケーブルの長さ (φ14.5mm)	ドライバ側コネクタ コネクタ形式 リセプタクル 3E206-0100KV(3M) シェルキット 3E306-3200-008(3M)	160	モータ側コネクタ M23 Series (Phoenix Contact) コネクタ形式 1621517 コンタクト形式 動力: 1621576 ブレーキ: 1618251 エンコーダ (DSL): 1621573
200V: 3000r/min モータ 2kW、 2.6kW 1500r/minモータ 2.7kW	形R88A-CX1D□□□BF □内はケーブルの長さ (φ14.9mm)	ドライバ側コネクタ コネクタ形式 リセプタクル 3E206-0100KV(3M) シェルキット 3E306-3200-008(3M)	160	モータ側コネクタ M23 Series (Phoenix Contact) コネクタ形式 1621517 コンタクト形式 動力: 1621577 ブレーキ: 1618251 エンコーダ (DSL): 1621573

注. ケーブルの長さには、3m、5m、10m、15m、20mがあります。 形式の□□□は、3m:003、5m:005、10m:010のようになります。


延長ケーブル

接続対象	形式	接続構成、外形寸法 (mm)	
200V: 3000r/min モータ 200W、 400W、750W	形R88A-CX1AE□□BF □内はケーブルの長さ (φ11.8mm)	ドライバ側コネクタ M17 Series (Phoenix Contact) コネクタ形式 1624653 コンタクト形式 動力: 1618256 ブレーキ: 1607579 エンコーダ (DSL): 1607578 エンコーダ (DSL) シールド: 1607579	モータ側コネクタ M17 Series (Phoenix Contact) コネクタ形式 1624639 コンタクト形式 動力: 1618251 ブレーキ: 1607582 エンコーダ(DSL): 1607581 エンコーダ(DSL) シールド: 1607582
200V: $3000r/\min \ \Xi - \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	形R88A-CX1BE□□BF □内はケーブルの長さ (φ14.5mm)	ドライバ側コネクタ M23 Series (Phoenix Contact) コネクタ形式 1621549 コンタクト形式 動力: 1621579 ブレーキ: 1618256 エンコーダ(DSL): 1621575	モータ側コネクタ M23 Series (Phoenix Contact) コネクタ形式 1621517 コンタクト形式 動力: 1621576 ブレーキ: 1618251 エンコーダ(DSL): 1621573
200V: 3000r/min モータ 2kW、 2.6kW 1500r/minモータ 2.7kW	形R88A-CX1DE□□BF □内はケーブルの長さ (φ14.9mm)	ドライバ側コネクタ M23 Series (Phoenix Contact) コネクタ形式 1621549 コンタクト形式 動力: 1621580 ブレーキ: 1618256 エンコーダ (DSL): 1621575	モータ側コネクタ M23 Series (Phoenix Contact) コネクタ形式 1621517 コンタクト形式 動力: 1621577 ブレーキ: 1618251 エンコーダ(DSL): 1621573

注. ケーブルの長さには、10m、20mがあります。 形式の□□は、10m:10、20m:20のようになります。

一体型ケーブルと延長ケーブルの組み合わせ仕様

20mを超えるケーブル長で使用する場合は、以下に示す組み合わせで使用してください。

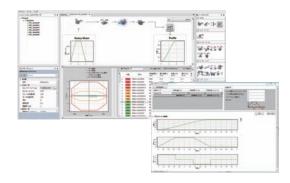
	長さ	組み合わせ		
全長	一体型ケーブル	延長ケーブル1	延長ケーブル2	和め古りと
3	3	_	_	一体型ケーブルのみ
5	5	_	_	一体型ケーブルのみ
10	10	_	_	一体型ケーブルのみ
15	15	_	_	一体型ケーブルのみ
20	20	_	_	一体型ケーブルのみ
30	20	10	_	一体型ケーブル + 延長ケーブル1
40	20	20	_	一体型ケーブル + 延長ケーブル1
50	20	10	20	一体型ケーブル + 延長ケーブル1 + 延長ケーブル2*

^{*}延長ケーブル1と延長ケーブル2は20m、10mの順番でも使用できます。

関連マニュアル

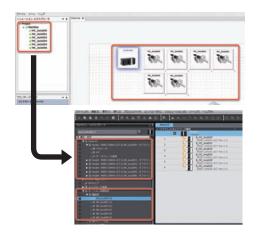
和文Man.No.	形式	マニュアル名称
SBCE-438	形R88M-1A□□/ R88D-1SAN□-ECT	ACサーボモータ/ドライバ 1Sシリーズ EtherCAT® 通信内蔵タイプ 安全機能対応 ユーザーズマニュアル
SBCA-418	形NX701-□□□□	NXシリーズ CPUユニット ユーザーズマニュアル ハードウェア編
SBCA-497	形NX502-□□□□	NXシリーズ 形NX502 CPUユニット ユーザーズマニュアル ハードウェア編
SBCA-462	形NX102-□□□□	NXシリーズ 形NX102 CPUユニット ユーザーズマニュアル ハードウェア編
SBCA-448	形NX1P2-□□□□□□ 形NX1P2-□□□□□1	NXシリーズ 形NX1P2 CPUユニット ユーザーズマニュアル ハードウェア編
SBCA-466	形NJ501-□□□□ 形NJ301-□□□□ 形NJ101-□□□□	NJシリーズ CPUユニット ユーザーズマニュアル ハードウェア編
SBCA-467	形NX701-□□□□ 形NX502-□□□□ 形NX102-□□□□ 形NX1P2-□□□□ 形NJ501-□□□□ 形NJ301-□□□□ 形NJ101-□□□□	NJ/NXシリーズ CPUユニット ユーザーズマニュアル ソフトウェア編
SBCE-433	形NX701-□□□□ 形NX502-□□□□ 形NX102-□□□□ 形NX1P2-□□□□ 形NJ501-□□□□ 形NJ301-□□□□ 形NJ101-□□□□	NJ/NXシリーズ CPUユニット ユーザーズマニュアル モーション制御編
SBCD-376	形NX701-1□□□ 形NX102-□□□□ 形NX1P2-□□□□□ 形NJ501-□□□□ 形NJ301-1□□□ 形NJ101-10□□/90□□	NJ/NXシリーズ CPUユニット内蔵 EtherCAT®ポート ユーザーズマニュアル
SBCA-434	形NY512-□□□□	NYシリーズ IPCマシンコントローラ産業用ボックス型PC ユーザーズマニュアル ハードウェア編
SBCA-435	形NY532-□□□□	NYシリーズ IPCマシンコントローラ産業用パネル型PC ユーザーズマニュアル ハードウェア編
SBCA-436	形NY532-□□□□ 形NY512-□□□□	NYシリーズ IPCマシンコントローラ産業用パネル型PC /産業用ボックス型PC ユーザーズマニュアル ソフトウェア編
SBCE-379	形NY532-□□□□ 形NY512-□□□□	NYシリーズ IPCマシンコントローラ産業用パネル型PC /産業用ボックス型PC ユーザーズマニュアル モーション制御編
SGFM-710	形NX-SL□□□□ 形NX-SI□□□□ 形NX-SO□□□□	NXシリーズ セーフティコントロールユニット ユーザーズマニュアル
SGFM-711	形NX-SL□□□□	NXシリーズセーフティコントロールユニットコマンドリファレンスマニュアル
SBCA-470	形SYSMAC-SE2□□□	Sysmac Studio Version1 オペレーションマニュアル
SBCE-401	形SYSMAC-SE2□□□	Sysmac Studio ドライブ機能オペレーションマニュアル
SBCE-359	形CJ1W-NC281 形CJ1W-NC481 形CJ1W-NC881 形CJ1W-NCF81 形CJ1W-NC482 形CJ1W-NC882 形CJ1W-NCF82	CJシリーズ 位置制御ユニット ユーザーズマニュアル
SJLB-306	形G9SP-N10S 形G9SP-N10D 形G9SP-N20S	G9SPシリーズ セーフティコントローラ ユーザーズマニュアル

当社Webから無料でダウンロードいただけます


http://www.fa.omron.co.jp/motor_sizing/

装置全体を対象としたACサーボモータの選定

- マシンオートメーションコントローラの同一プロジェクト内のすべてのモータを選定できます。
- 事前に定義したシステムをアプリケーションで使用できます。
- 最適なドライバ、モータ、ギアボックスの組み合わせを選定します。
- 1つの画面で設計、調整、検証を行えます。
- 選定結果ファイルをSysmac Studioに直接取り込めるので、装置の開発工数を削減できます。


簡単ACサーボモータ選定

- ・豊富な機械要素
- Sysmac Studioの電子カムデータをインポート可能
- グラフィカルな選定画面
- •1つの画面で調整が可能。調整結果を自動更新

選定時の設定の流用

- ・選定結果ファイルのエクスポート
- ・選定結果ファイルをSysmac Studioにインポート可能
- EtherCAT構成、軸設定、サーボパラメータの自動作成

対応機種

1Sシリーズ	EtherCAT通信内蔵タイプ安全機能対応	形R88D-1SAN□-ECT
1Sシリーズ	EtherCAT通信内蔵タイプSS1/SLS安全機能搭載	形R88D-1SN□-ECT-51
1Sシリーズ	EtherCAT通信内蔵タイプ	形R88D-1SN□-ECT
G5シリーズ	EtherCAT通信内蔵タイプ(回転型モータ用)	形R88D-KN□-ECT
G5シリーズ	EtherCAT通信内蔵タイプ(リニアモータ用)	形R88D-KN□-ECT-L
G5シリーズ	MECHATROLINK-II 通信内蔵タイプ	形R88D-KN□-ML2
G5シリーズ	汎用入力タイプ(アナログ入力/パルス列入力共用)	形R88D-KT

MEMO

オムロン商品ご購入のお客様へ

ご承諾事項

平素はオムロン株式会社(以下「当社」)の商品をご愛用いただき誠にありがとうございます。

「当社商品」のご購入について特別の合意がない場合には、お客様のご購入先にかかわらず、本ご承諾事項記載の条件を適用いたします。ご承諾のうえご注文ください。

1. 定義

本ご承諾事項中の用語の定義は次のとおりです。

- ①「当社商品」:「当社」のFAシステム機器、汎用制御機器、センシング機器、電子・機構部品
- ② 「カタログ等」: 「当社商品」に関する、ベスト制御機器オムロン、電子・機構部品総合カタログ、その他のカタログ、仕様書、取扱説明書、マニュアル等であって電磁的方法で提供されるものも含みます。
- ③「利用条件等」:「カタログ等」に記載の、「当社商品」の利用条件、定格、性能、動作環境、取り扱い方法、利用上の注意、禁止事項その他
- ④ 「お客様用途」: 「当社商品」のお客様におけるご利用方法であって、お客様が製造する部品、電子基板、機器、設備またはシステム等への「当社商品」の組み込み又は利用を含みます。
- ⑤ 「適合性等」: 「お客様用途」での「当社商品」の(a) 適合性、(b) 動作、(c) 第三者の知的財産の非侵害、(d) 法令の遵守および(e) 各種規格の 遵守

2. 記載事項のご注意

「カタログ等」の記載内容については次の点をご理解ください。

- ① 定格値および性能値は、単独試験における各条件のもとで得られた値であり、各定格値および性能値の複合条件のもとで得られる値を保証するものではありません。
- ② 参考データはご参考として提供するもので、その範囲で常に正常に動作することを保証するものではありません。
- ③ 利用事例はご参考ですので、「当社」は「適合性等」について保証いたしかねます。
- ④ 「当社」は、改善や当社都合等により、「当社商品」の生産を中止し、または「当社商品」の仕様を変更することがあります。

3. ご利用にあたってのご注意

ご採用およびご利用に際しては次の点をご理解ください。

- ① 定格・性能ほか「利用条件等」を遵守しご利用ください。
- ② お客様ご自身にて「適合性等」をご確認いただき、「当社商品」のご利用の可否をご判断ください。 「当社」は「適合性等」を一切保証いたしかねます。
- ③「当社商品」がお客様のシステム全体の中で意図した用途に対して、適切に配電・設置されていることをお客様ご自身で、必ず事前に確認してください。
- ④ 「当社商品」をご使用の際には、(i)定格および性能に対し余裕のある「当社商品」のご利用、冗長設計などの安全設計、(ii)「当社商品」が故障しても、「お客様用途」の危険を最小にする安全設計、(iii)利用者に危険を知らせるための、安全対策のシステム全体としての構築、(iv)「当社商品」および「お客様用途」の定期的な保守、の各事項を実施してください。
- ⑤ 「当社」はDDoS攻撃(分散型DoS攻撃)、コンピュータウイルスその他の技術的な有害プログラム、不正アクセスにより、「当社商品」、インストールされたソフトウェア、またはすべてのコンピュータ機器、コンピュータプログラム、ネットワーク、データベースが感染したとしても、そのことにより直接または間接的に生じた損失、損害その他の費用について一切責任を負わないものとします。

お客様ご自身にて、(i)アンチウイルス保護、(ii)データ入出力、(iii)紛失データの復元、(iv)「当社商品」またはインストールされたソフトウェアに対するコンピュータウイルス感染防止、(v)「当社商品」に対する不正アクセス防止についての十分な措置を講じてください。

- ⑥「当社商品」は、一般工業製品向けの汎用品として設計製造されています。
 - 従いまして、次に掲げる用途での使用は意図しておらず、お客様が「当社商品」をこれらの用途に使用される際には、「当社」は「当社商品」に対して一切保証をいたしません。ただし、次に掲げる用途であっても「当社」の意図した特別な商品用途の場合や特別の合意がある場合は除きます。
 - (a) 高い安全性が必要とされる用途(例:原子力制御設備、燃焼設備、航空・宇宙設備、鉄道設備、昇降設備、娯楽設備、医用機器、安全装置、その他生命・身体に危険が及びうる用途)
 - (b) 高い信頼性が必要な用途(例:ガス・水道・電気等の供給システム、24時間連続運転システム、決済システムほか権利・財産を取扱う用途など)
 - (c) 厳しい条件または環境での用途(例:屋外に設置する設備、化学的汚染を被る設備、電磁的妨害を被る設備、振動・衝撃を受ける設備など)
 - (d) 「カタログ等」に記載のない条件や環境での用途
- ⑦ 上記3. ⑥(a)から(d)に記載されている他、「本カタログ等記載の商品」は自動車(二輪車含む。以下同じ)向けではありません。自動車に搭載する 用途には利用しないでください。自動車搭載用商品については当社営業担当者にご相談ください。

4. 保証条件

「当社商品 |の保証条件は次のとおりです。

- ① 保証期間:ご購入後1年間といたします。(ただし「カタログ等」に別途記載がある場合を除きます。)
- ② 保証内容: 故障した「当社商品」について、以下のいずれかを「当社」の任意の判断で実施します。
 - (a) 当社保守サービス拠点における故障した「当社商品」の無償修理(ただし、電子・機構部品については、修理対応は行いません。)
 - (b) 故障した「当社商品」と同数の代替品の無償提供
- ③ 保証対象外:故障の原因が次のいずれかに該当する場合は、保証いたしません。
 - (a) 「当社商品」本来の使い方以外のご利用
 - (b) 「利用条件等」から外れたご利用
 - (c) 本ご承諾事項「3. ご利用にあたってのご注意」に反するご利用
 - (d) 「当社」以外による改造、修理による場合
 - (e) 「当社」以外の者によるソフトウェアプログラムによる場合
 - (f) 「当社」からの出荷時の科学・技術の水準では予見できなかった原因
 - (g) 上記のほか「当社」または「当社商品」以外の原因(天災等の不可抗力を含む)

5. 責任の制限

本ご承諾事項に記載の保証が、「当社商品」に関する保証のすべてです。

「当社商品」に関連して生じた損害について、「当社」および「当社商品」の販売店は責任を負いません。

6. 輸出管理

「当社商品」または技術資料を、輸出または非居住者に提供する場合は、安全保障貿易管理に関する日本および関係各国の法令・規制を遵守ください。お客様が法令・規則に違反する場合には、「当社商品」または技術資料をご提供できない場合があります。

オムロン株式会社 インダストリアルオートメーションビジネスカンパニー

製品に関するお問い合わせ先

お客様 相談室 ■端 0120-919-066

携帯電話の場合、

♥ 055-982-5015(有料)をご利用ください。

受付時間: 9:00~17:00(土・日・12/31~1/3を除く)

www.fa.omron.co.jp/contact/tech/chat/

技術相談員にチャットでお問い合わせいただけます。(I-Webメンバーズ限定)

受付時間: 平日9:00~12:00 / 13:00~17:00(土日祝日・年末年始・当社休業日を除く) ※受付時間、営業日は変更の可能性がございます。最新情報はリンク先をご確認ください。

その他のお問い合わせ: 納期・価格・サンプル・仕様書は貴社のお取引先、または貴社担当オムロン販売員にご相談ください。オムロン制御機器販売店やオムロン販売拠点は、Webページでご案内しています。

オムロン制御機器の最新情報をご覧いただけます。緊急時のご購入にもご利用ください。 WWW.fa.omron.co.jp

本誌には主に機種のご選定に必要な内容を掲載しており、ご使用上の注意事項等を掲載していない製品も含まれています。 本誌に注意事項等の掲載のない製品につきましては、ユーザーズマニュアル掲載のご使用上の注意事項等、ご使用の際に必要な内容を必ずお読みください。

- ●本誌に記載の標準価格はあくまで参考であり、確定されたユーザ購入価格を表示 したものではありません。本誌に記載の標準価格には消費税が含まれておりません。
- ●本誌にオープン価格の記載がある商品については、標準価格を決めていません。
- ●本誌に記載されているアプリケーション事例は参考用ですので、ご採用に際しては 機器・装置の機能や安全性をご確認の上、ご使用ください。
- ●本誌に記載のない条件や環境での使用、および原子力制御・鉄道・航空・車両・燃焼 装置・医療機器・娯楽機械・安全機器、その他人命や財産に大きな影響が予測されるなど、 特に安全性が要求される用途に使用される際には、当社の意図した特別な商品用途の 場合や特別の合意がある場合を除き、当社は当社商品に対して一切保証をいたしません。
- ●本製品の内、外国為替及び外国貿易法に定める輸出許可、承認対象貨物(又は技術)に 該当するものを輸出(又は非居住者に提供)する場合は同法に基づく輸出許可、承認 (又は役務取引許可)が必要です。
- ●規格認証/適合対象機種などの最新情報につきましては、 当社Webサイト(www.fa.omron.co.jp)の「規格認証/適合」をご覧ください。

©OMRON Corporation 2020-2024 All Rights Reserved. お断りなく仕様などを変更することがありますのでご了承ください

カタログ番号 SBCE-113S

2024年8月現在